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Paths to Compressive Learning

Objective

Learn parameters Θ from a large database (x1, ...,xN ) ∈ Rn.

Examples:
Learn subspace VΘ of principal components
Learn parameters of a classifier fΘ

Fit a probability distribution pΘ

...
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Paths to Compressive Learning

Objective

Learn parameters Θ from a large database (x1, ...,xN ) ∈ Rn.

x1 . . . xN

Training data

Θ

Parameters

y1 yN. . .

Compressed elements

z

Database sketch

Chosen method
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In this talk

In this talk
Efficient method for Gaussian Mixture Model (GMM) estimation
from a sketch.

Example :
Estimation of a 20-GMM from a database of N = 106 vectors in
R10

5000-fold compression of the database
Can be performed efficiently on GPU / clusters

Estimation process 70× faster than EM
Same precision than EM in the result
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Approach : Generalized Compressive Sensing

Traditional Compressive Sensing (CS)

From y ≈Mx ∈ Rm recover vector x ∈ Rn

Linear M ∈ Rm×n with m < n

Typical assumption: x sparse, etc.

Generalized Compressive Sensing

From z ≈ Ap ∈ Cm recover probability distribution p ∈ L1(Rn)

Must define:
Linear operator A : L1(Rn) 7→ Cm

Generalized "sparsity" in L1(Rn)
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Sparse probability distributions: Mixture Models

K-sparse vectors: combination of K "basic" elements
"K-sparse" probability distributions :

pΘ,α =

K∑
k=1

αkpθk

with α ≥ 0;
∑

k αk = 1; pθk
∈ {pθ;θ ∈ T }

Sketch z =
∑K

k=1 αkApθk as a combination of atoms in the
dictionary:

D = {Apθ; θ ∈ T }

Challenge

Possibly infinite / continuous dictionary D.
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Application to Compressive Learning

From theoretical Generalized CS...

p
A

−−−−→ z = Ap
Alg.

−−−−→ pΘ,α

...to practical Compressive Learning:

p̂ =
1

N

∑
i
δxi

A
−−−−→ ẑ = Ap̂

Alg.

−−−−→ pΘ̂,α̂

where (x1, ...,xN )
i.i.d.∼ p.

Questions:
Reconstruction algorithm ? (Part 2)
Choice of sketching operator A ? (Part 3)
Empirically/theoretically valid ? (Parts 4 and 5)
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Approach

p
A

−−−−→ z = Ap
Alg.
−−−−→ pΘ,α

Cost function

min
Θ,α
‖z−ApΘ,α‖2

Similar to minx:‖x‖0≤s ‖y −Mx‖2 in CS.

Pros: Under some hypothesis on G and A, yields provably
good solutions with high probability (Section 5)

Cons: Generally highly non-convex / intractable
Convex relaxation (Bunea 2010): seems difficult because of
infinite / continuous dictionary
Greedy approaches: approach retained here
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Orthogonal Matching Pursuit with Replacement

OMP: add an atom to the support by maximizing its
correlation to the residual, update the residual, repeat.

OMP with Replacement (Jain 2011)
More iterations than OMP, Hard Thresholding step.

Compressive Learning OMPR (proposed)

Non-negativity on weights α
Continuous dictionary −→ gradient descents
Add a global optimization step.

Number of iterations Compressive Sensing Compressive Learning

K OMP CLOMP
2K OMPR CLOMPR
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Compressive Learning OMPR

Example : iteration 4 of CLOMPR, searching for a 3-GMM

Current support
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Compressive Learning OMPR

Example : iteration 4 of CLOMPR, searching for a 3-GMM

Add an atom to the support with a gradient descent:
arg maxθ Re

〈
r, Apθ‖Apθ‖2

〉
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Compressive Learning OMPR

Example : iteration 4 of CLOMPR, searching for a 3-GMM

Hard Thresholding to reduce the support

Solve a Non-negative Least Squares to find the weights α.
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Compressive Learning OMPR

Example : iteration 4 of CLOMPR, searching for a 3-GMM

New step: global gradient descent initialized with the
current parameters to further reduce ‖z−ApΘ,α‖2

Update residual.
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What is left ?

p
A

−−−−→ z = Ap
CLOMP (R)

−−−−−−−→ pΘ,α =
∑
k

αkpθk

To perform CLOMP(R), Apθ and ∇θApθ must have a closed-form
expression.

Here:
GMMs with diagonal covariance

Soon-to-be-released toolbox:
K-means
full GMMs
Gaussian regression
α-stable (in progress)
User-defined !
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Model: Gaussian mixture

p
A

−−−−→ z = Ap
CLOMP (R)

−−−−−−−→ pΘ,α =
∑
k

αkpθk

Gaussian Mixture Model

pθ = N (µ,Σ) with diagonal Σ
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Sketching operator

p
A

−−−−→ z = Ap
CLOMP (R)

−−−−−−−→ pΘ,α

Random Sampling of the characteristic function (Bourrier 2013)

Denote ψp(ω) = Ex∼p(e
iωTx). Given (ω1, ...,ωm) ∈ Rn, define

Ap =
1√
m

[
ψp(ωj)

]
j=1,...,m

Closed-form for GMMs
Analog to Random Fourier Sampling: (ω1, ...,ωm)

i.i.d.∼ Λ

ẑ = 1√
m

[
1
N

∑
i e

iωT
j xi

]
j=1,...,m

easily computable (distributed,

GPU, streaming...)
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To summarize

p̂
A

−−−−→ ẑ = Ap̂
CLOMP (R)

−−−−−−−→ pΘ,α

Given a database X = (x1, ...,xN ) ∈ Rn, m, K:
Design A

Choose the frequency distribution Λ
Draw m frequencies (ω1, ...,ωm) ∈ Rn

Compute ẑ = 1√
m

[
1
N

∑
i e

iωT
j xi

]
j=1,...,m

GPU, distributed computing, etc.
Throw away X !

Privacy preserving

Estimate a K-GMM pΘ,α from ẑ using CLOMP(R).
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Designing the frequency distribution

The frequency distribution must "scale" with (the variances of) the GMM.

Approach 1 Optimize the variance of a Gaussian frequency distribution

Ex : cross-validation with likelihood
Classical choice (Sutherland 2015)
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Designing the frequency distribution

The frequency distribution must "scale" with (the variances of) the GMM.

Approach 1 Optimize the variance of a Gaussian frequency distribution
Approach 2 Proposed:

Partial preprocessing to compute the appropriate "scaling"
Distribution that aims at maximizing ‖∇θψpθ

‖2

The proposed distribution

Yields better precision in the reconstruction

Is 20× to 100× faster to design
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To summarize (2)

p̂
X→Λ→A
−−−−−−−→ ẑ = Ap̂

CLOMP (R)

−−−−−−−→ pΘ,α

Given a database X = (x1, ...,xN ) ∈ Rn, m, K:
Design A

Partial preprocessing to choose the frequency distribution Λ
Draw m frequencies (ω1, ...,ωm) ∈ Rn

Compute ẑ = 1√
m

[
1
N

∑
i e

iωT
j xi

]
j=1,...,m

GPU, distributed computing, etc.
Throw away X !

Privacy preserving

Estimate a K-GMM pΘ,α from ẑ using CLOMP(R).
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Reconstruction results

Comparison with EM (VLFeat toolbox) and previous Compressive Learning IHT
(Bourrier 2013). KL-div (lower is better), n = 10, m = 5(2n + 1)K.
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Memory usage and computation time
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Remember : Sketching easily done on GPU/cluster
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Application : speaker verification

NIST2005 database with MFCCs

Classical method (Reynolds 2000), not state-of-the-art but serves as a
proof of concept

CLOMPR EM
m = 103 m = 104 m = 105

N = 3.105 37.15 30.24 29.77 29.53
N = 2.108 36.57 28.96 28.59 N/A

A large database enhances the quality of the sketch
Limitations are observed for large K : difficult "sparse
approximation" task of a non-sparse distribution
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Information preservation guarantees ?

p
A

−−−−→ z = Ap
CLOMP (R)

−−−−−−−→ pΘ,α

CLOMP(R) attempts to solve minΘ,α ‖z−ApΘ,α‖2

Difficult to obtain guarantees for CLOMP(R): non-convex,
random...

More fundamentally: if we were able to exactly solve

min
p∈Σ
‖z−Ap‖2,

with Σ "low-dimensional" set of distribution (e.g. K-sparse
GMMs), do we have any guarantee ?
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Information preservation guarantees ?

p
A

−−−−→ z = Ap
Best algo. possible
−−−−−−−−−→ p̄ ∈ arg min

p∈Σ
‖z−Ap‖2

Does z contains "enough" information to recover p ∈ Σ ?
Is it stable if p /∈ Σ ?
Is it stable to use ẑ instead of z ?
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Information preservation guarantees ? Yes !

p̂
A

−−−−→ ẑ = Ap̂
Best algo. possible
−−−−−−−−−→ p̄ ∈ arg min

p∈Σ
‖ẑ−Ap‖2

Main result
(under hypotheses on Σ and Λ)

W.h.p. on (x1, ...,xN )
i.i.d.∼ p∗ and (ω1, ...,ωm)

i.i.d.∼ Λ,

γΛ(p∗, p̄) ≤ 5dTV (p∗,Σ) +O
(
N−

1
2

)
+ η,

γΛ "kernel" metric (Sriperumbudur 2010)
dTV total variation distance between p∗ and the model Σ
η additive error in m
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Application to GMMs with compact set of parameters.

K = 1 (toy):
η = O(β−m): Good !

K ≥ 2:
η = O

(
m− 1

2

)
: Worst possible !

Global error in O
(
N− 1

2 +m− 1
2

)
: "compressive" approach ?

Conjecture: it is in fact much better !
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Conclusion

Summary

Effective method to learn GMMs from a sketch, using greedy algorithms
and an efficient heuristic to design the sketching operator. Empirical and
theoretical motivations.

In the journal paper

Faster algorithm for GMM with large K

More on theoretical guarantees

Future Work

Application to other Mixture Models (K-means, α-stable...)

Generalized theoretical guarantees

Application to other kernel methods (Sutherland 2015)
(classification...)
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Questions ?

Keriven et al., Sketching for Large-Scale Learning of Mixture
Models, arXiv:1606.02838
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