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Paths to Compressive Learning

Objective

Learn parameters © from a large database (x1,...,xy) € R™.

Examples:
@ Learn subspace Vg of principal components
o Learn parameters of a classifier fg

o Fit a probability distribution pg
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Paths to Compressive Learning

Objective

Learn parameters © from a large database (x1,...,xy) € R™.

Chosen method

X1 XN —
Training data Database sketch
— e )
Compressed elements Parameters lnztar
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In this talk

Efficient method for Gaussian Mixture Model (GMM) estimation
from a sketch.

Example -
Estimation of a 20-GMM from a database of N = 106 vectors in
RIO
@ 5000-fold compression of the database
o Can be performed efficiently on GPU / clusters

o Estimation process 70x faster than EM

@ Same precision than EM in the result

Crria
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Approach : Generalized Compressive Sensing

Traditional Compressive Sensing (CS)

From y =~ Mx € R™ recover vector x € R"

o Linear M € R™*™ with m < n

o Typical assumption: x sparse, etc.

Generalized Compressive Sensing

From z ~ Ap € C™ recover probability distribution p € Ll(R")

Must define:
e Linear operator A : L}(R") — C™
o Generalized "sparsity" in L'(R")
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Sparse probability distributions: Mixture Models

o K-sparse vectors: combination of K "basic" elements
o "K-sparse" probability distributions :
K

Poa =3 are,
k=1

o witha >0; Y, ar=1; pg, € {pe;0 €T}

o Sketch z = Y4 | ap.Apg, as a combination of atoms in the

dictionary:

D= {Apg; 0 €T}

Conclusion

Challenge

Possibly infinite / continuous dictionary D.

-
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Application to Compressive Learning

From theoretical Generalized CS...

A Alg.
p——z=Ap —— Po,a

...to practical Compressive Learning:

1 A Al
P L — i,
i.9.d.

where (x1,...,Xn) ~ p.

Conclusion

Questions:
@ Reconstruction algorithm 7 (Part 2)
o Choice of sketching operator A 7 (Part 3)
o Empirically/theoretically valid 7 (Parts 4 and 5)

Crria
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Approach

A Alg.
p——z=Ap —— Po,a

min ||z — Ape «l|2
0,

@ Similar to miny.|x|,<s ||y — Mx]||2 in CS.

@ Pros: Under some hypothesis on G and A, yields provably
good solutions with high probability (Section 5)

o Cons: Generally highly non-convex / intractable
o Convex relaxation (Bunea 2010): seems difficult because of

infinite / continuous dictionary
o Greedy approaches: approach retained here
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Orthogonal Matching Pursuit with Replacement

@ OMP: add an atom to the support by maximizing its
correlation to the residual, update the residual, repeat.

Conclusion
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Orthogonal Matching Pursuit with Replacement

o OMP
e OMP with Replacement (Jain 2011)
o More iterations than OMP, Hard Thresholding step.

Similar to CoOSAMP or Subspace Pursuit.

Conclusion
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Orthogonal Matching Pursuit with Replacement

o OMP
e OMP with Replacement (Jain 2011)

o More iterations than OMP, Hard Thresholding step.
@ Compressive Learning OMPR (proposed)

o Non-negativity on weights «

o Continuous dictionary —» gradient descents

o Add a global optimization step.

Conclusion

brzia—

7/22



Introduction Proposed Algorithm
00000 0®00

Sketching GMM Results
00000 000

Theoretical guarantees ?
0000

Orthogonal Matching Pursuit with Replacement

o OMP

e OMP with Replacement (Jain 2011)

o More iterations than OMP, Hard Thresholding step.
@ Compressive Learning OMPR (proposed)

o Non-negativity on weights «
o Continuous dictionary —» gradient descents
o Add a global optimization step.

Number of iterations

Compressive Sensing

Compressive Learning

K

OMP

CLOMP

2K

OMPR

CLOMPR

Conclusion
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Compressive Learning OMPR

Example : iteration 4 of CLOMPR, searching for a 3-GMM

o Current support

%)
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Compressive Learning OMPR

Example : iteration 4 of CLOMPR, searching for a 3-GMM

@ Add an atom to the support with a gradient descent:

A,
arg maxg Re <r, 7||AI?:H2 >

%)

33 2 = 0 1 2 3 .
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Compressive Learning OMPR

Example : iteration 4 of CLOMPR, searching for a 3-GMM

o Hard Thresholding to reduce the support
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Compressive Learning OMPR

Example : iteration 4 of CLOMPR, searching for a 3-GMM
o Hard Thresholding to reduce the support
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Compressive Learning OMPR

Example : iteration 4 of CLOMPR, searching for a 3-GMM
o Hard Thresholding to reduce the support

@ Solve a Non-negative Least Squares to find the weights .

%)

-3 .
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Conclusion
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Compressive Learning OMPR

Example : iteration 4 of CLOMPR, searching for a 3-GMM

o New step: global gradient descent initialized with the
current parameters to further reduce ||z — Ape |2
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Compressive Learning OMPR

Example : iteration 4 of CLOMPR, searching for a 3-GMM

o New step: global gradient descent initialized with the
current parameters to further reduce ||z — Ape |2

o Update residual.

%)
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Conclusion
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What is left ?
A CLOMP(R)
p——z2=Ap ———poa = Zakpak

k

To perform CLOMP(R), Apg and Vg Apg must have a closed-form
expression. J

o Here:
o GMMs with diagonal covariance
@ Soon-to-be-released toolbox:

K-means

full GMMs

Gaussian regression
a-stable (in progress)
User-defined !

®© 6 6 o o
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Model: Gaussian mixture

A CLOMP(R)
p——z=Ap———poa=> app,
e

Gaussian Mixture Model

pg = N (u, X) with diagonal
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Sketching operator

A CLOMP(R)
p——z2=Ap ——Poa

Random Sampling of the characteristic function (Bourrier 2013)

Denote 9p,(w) = IEXNp(ei“’Tx). Given (w1, ...,wn) € R™, define

Ap = % [¢p(‘*’j)]

Jj=1,....m

o Closed-form for GMMs

@ Analog to Random Fourier Sampling: (w1, ..., wp,) iid\
N | 1 inXi . i .
°z="Tm [N D€ ]j=1,...,m easily computable (distributed,

GPU, streaming...)
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To summarize

Given a database X = (x1,...,xy) € R", m, K:
@ Design A

o Choose the frequency distribution A
o Draw m frequencies (w1, ...,w,,) € R"

Tx,

o Compute z = ﬁ [% > e ]j:Lm’m
o GPU, distributed computing, etc.
@ Throw away X !
o Privacy preserving
o Estimate a K-GMM pg o from z using CLOMP(R).

Conclusion
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To summarize

Given a database X = (x1,...,xy) € R", m, K:
@ Design A

o Choose the frequency distribution A
o Draw m frequencies (w1, ...,w,,) € R"
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o Compute z = ﬁ [% > e ]j:Lm’m
o GPU, distributed computing, etc.
@ Throw away X !
o Privacy preserving
o Estimate a K-GMM pg o from z using CLOMP(R).

Conclusion
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Designing the frequency distribution

The frequency distribution must "scale"” with (the variances of) the GMM.

Approach 1 Optimize the variance of a Gaussian frequency distribution

o Ex: cross-validation with likelihood
o Classical choice (Sutherland 2015)

‘3?744:5
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Designing the frequency distribution

The frequency distribution must "scale" with (the variances of) the GMM.

Approach 1 Optimize the variance of a Gaussian frequency distribution
Approach 2 Proposed:

o Partial preprocessing to compute the appropriate "scaling"
o Distribution that aims at maximizing [|Vg1/p, |2

The proposed distribution

o Yields better precision in the reconstruction

e Is 20x to 100x faster to design

13/22
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To summarize (2)

o X=AA . CLOMP(R)
p———z2=Ap ———po.a

Given a database X = (x1,...,xy) € R", m, K:

@ Design A

o Partial preprocessing to choose the frequency distribution A
o Draw m frequencies (w1, ...,w,,) € R"

Tx,

5 — 1 |1 giw
o GPU, distributed computing, etc.

@ Throw away X !
o Privacy preserving

o Estimate a K-GMM pg o from z using CLOMP(R).
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14 /22



0 Introduction

© Proposed Algorithm

© Sketching GMM

Q Results

e Theoretical guarantees ?

e Conclusion



Introduction

00000 0000

Proposed Algorithm

Sketching GMM

00000

Reconstruction results

Results
@00

Theoretical guarantees ?
0000

Conclusion

Comparison with EM (VLFeat toolbox) and previous Compressive Learning IHT
(Bourrier 2013). KL-div (lower is better), n = 10, m = 5(2n + 1)K.
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@ Remember : Sketching easily done on GPU/cluster
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Application : speaker verification

@ NIST2005 database with MFCCs

@ Classical method (Reynolds 2000), not state-of-the-art but serves as a
proof of concept

CLOMPR
m=103 [ m=10F | m =10°
N =3.10° 37.15 30.24 29.77 29.53
N =210% | 36.57 28.96 28.59 N/A

EM

o A large database enhances the quality of the sketch

o Limitations are observed for large K : difficult "sparse
approximation" task of a non-sparse distribution

Crria
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Information preservation guarantees ?

A CLOMP(R)
p——z=Ap ——— Po,a

o CLOMP(R) attempts to solve ming « ||z — Ape «ll2

Conclusion
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Information preservation guarantees ?

A CLOMP(R)
p——z=Ap ——— Po,a

o CLOMP(R) attempts to solve ming « ||z — Ape «ll2

o Difficult to obtain guarantees for CLOMP(R): non-convex,
random...
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Information preservation guarantees ?

A CLOMP(R)
p——z=Ap ——— Po,a

o CLOMP(R) attempts to solve ming « ||z — Ape «ll2

o Difficult to obtain guarantees for CLOMP(R): non-convex,
random...

@ More fundamentally: if we were able to exactly solve

gggllz — Apllz,

with X "low-dimensional" set of distribution (e.g. K-sparse
GMMs), do we have any guarantee ?

Crria
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Information preservation guarantees ?

A Best algo. possible
p——z=Ap — p¢€ argnéigﬂz — Apl|2
P
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Information preservation guarantees ?

A Best algo. possible
p——z=Ap —— p¢€ argnéignz — Apll2
P

@ Does z contains "enough" information to recover p € ¥ 7
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Information preservation guarantees ?

A Best algo. possible
p——z=Ap — p¢€ argnéigﬂz — Apl|2
P

@ Does z contains "enough" information to recover p € ¥ 7
o Isitstableifp ¢ X7
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Information preservation guarantees ?

A Best algo. possible
p——z=Ap — p¢€ argnéigﬂz — Apl|2
P

@ Does z contains "enough" information to recover p € ¥ 7
o Isitstableifp g X7

o Is it stable to use Z instead of z 7

brzia—
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Information preservation guarantees ? Yes !

A Best algo. possible
p——z=Ap —— ﬁEargmigﬂz—Ap”Z
pE

Main result

(under hypotheses on X and A)

© Whp. on (x1,...,3xn) "% p* and (wr,..,wp) K A,

1
A (p*,P) < 5dry (p*, ) + O (N—z> -
o va "kernel" metric (Sriperumbudur 2010)

o dpy total variation distance between p* and the model X
o 1) additive error in m
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Application to GMMs with compact set of parameters.
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Application to GMMs with compact set of parameters.

o K =1 (toy):
o n=0(F"™): Good !
o K >2:
on=0 (m_%): Worst possible !
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Application to GMMs with compact set of parameters.

o K =1 (toy):
o n=0(F"™): Good !
o K >2:
on=0 (m_%): Worst possible !

n
o Global error in O (N_% + m_%): ""compressive" approach ?
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Application to GMMs with compact set of parameters.

o K =1 (toy):
o n=0(F"™): Good !
o K >2:

on=0 (m_%): Worst possible !
o Global error in O (N_% + m_%): ""compressive" approach ?

o Conjecture: it is in fact much better !
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Application to GMMs with compact set of parameters.

o K =1 (toy):
o n=0(F"™): Good !

o K >2:
on=0 (m_%): Worst possible !

o Global errorin O (N~2 + m_%): ""compressive" approach ?

o Conjecture: it is in fact much better !

10°}-o-K=5, m=525 . TVver
~-K=20, m=2100) U ~o-K=5 "o
. ‘ol .
o) = — k=20 D U
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m/((2n+1)K)
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Conclusion

Effective method to learn GMMs from a sketch, using greedy algorithms
and an efficient heuristic to design the sketching operator. Empirical and
theoretical motivations.

In the journal paper
o Faster algorithm for GMM with large K
@ More on theoretical guarantees
Future Work
o Application to other Mixture Models (K-means, a-stable...)
@ Generalized theoretical guarantees
@ Application to other kernel methods (Sutherland 2015)
(classification...) .
Crria—
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Keriven et al., Sketching for Large-Scale Learning of Mixture
Models, arXiv:1606.02838
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