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Paths to Compressive Learning

Objective

Fit density po on a large database (x1,...,xy) € R".

Chosen method

X1 XN —
Training data Database sketch
— e )
Compressed elements Parameters lnztar
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Approach : Generalized Compressive Sensing

Traditional Compressive Sensing (CS)

From y ~ Mx € R™ recover vector x € R"

o Linear M € R™*"™ with m < n

o Typical assumption: sparse signal x = >, 1 zx€}.

v

Generalized Compressive Sensing

From z =~ Ap € C™ recover probability distribution p € P

Must define:
@ Linear operator A: P — C™

o Generalized "sparsity": pg o = Zszl aRpe,
o Infinite/continuous dictionary !

-
7
Jca—
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Application to Compressive Learning

From theoretical Generalized CS...

A Alg.
p——z=Ap —— Po,a

...to practical Compressive Learning:

where (x1,...,Xn) Y p.

Conclusion

Questions:
@ Reconstruction algorithm ?
@ Choice of sketching operator A 7
o Empirically/theoretically valid ?
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Approach

A Alg.
p——z=Ap —— Po,a

min ||z — Ape «l|2
0,

@ Similar to miny.|x|,<s ||y — Mx]||2 in CS.

Need approximate algorithms !
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Proposed Algorithm: quick overview

o Greedy : progressively add components pg,
@ Inspired by OMP, adapted to continuous settings
o Two versions
o Compressive Learning OMP (CLOMP)
o CLOMPR (with Replacement): slower but better results
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What is left 7
A CLOMP(R)
p——z2=Ap ———poa = Z%pak

k

To perform CLOMP(R), Apg and Vg Apg must have a closed-form
expression. J

o Here:
o 0 = (u,0) and pg : GMMs with diagonal covariance
@ Soon-to-be-released toolbox:

o K-means

full GMMs

GLLiM [Deleforge 2014]

a-stable (in progress)

User-defined ! (black-box implementation)

e 6 o o
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Sketching operator

A CLOMP(R)
p——z2=Ap —— o

Random Sampling of the characteristic function [Bourrier 2013]

Given (wi,...,wnm) € R™,

Ap = [EXNp(einX)]

j=1,...,m
@ Closed-form for many models !
@ Analog to Random Fourier Sampling: (w1, ..., wp,) g
0 z= [% ) ei“’?xi]j_l - easily computable (distributed,

GPU, streaming...)

‘9914?:?
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Designing the frequency distribution

The frequency distribution must "scale” with (the variances of) the GMM.

Approach 1 Optimize the variance of a Gaussian frequency distribution
o Classical choice in kernel methods [Sutherland 2015]
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Designing the frequency distribution

The frequency distribution must "scale” with (the variances of) the GMM.
approach 1 Optimize the variance of a Gaussian frequency distribution
Approach 2 Proposed:

o Partial preprocessing to compute the appropriate "scaling"

The proposed distribution

o Yields better precision in the reconstruction

e Is 20x to 100x faster to design
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To summarize

XSASA CLOMP(R)
p————2=Ap —— poa

)

Given a database X = (x1,...,xy) € R", m, K:
o Design A

o Partial preprocessing to choose the frequency distribution A

o Draw m frequencies (w1, ...,w,,) € R"

A 1 1 iwl'x;
o Com utez:—[— e i ’]
P vm [N ZZ 7j=1,...m

o GPU, distributed computing, etc.

o Estimate a K-GMM pg o from z using CLOMP(R).

Conclusion

Crria
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Reconstruction results

Comparison with EM (VLFeat toolbox) and previous Compressive Learning IHT
[Bourrier 2013]. KL-div (lower is better), n = 10, m = 5(2n + 1) K.
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Memory usage and computation time

Conclusion

" -+=Sketch + freq. (CLOMPR) "
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o Remember : Sketching easily done on GPU/cluster
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Proof of concept : speaker verification

@ NIST2005 database with MFCCs: N = 2 - 108

@ A large database indeed enhances the results

o Limitations are observed for large K : difficult "sparse

approximation" task of a non-sparse distribution

Conclusion

Crria
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Information preservation guarantees 7

A CLOMP(R)
p——z=Ap —— Po,a

o CLOMP(R) attempts to solve ming « ||z — Ape «l|2

o Difficult to obtain guarantees for CLOMP(R): non-convex,
random...

Crria
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Information preservation guarantees 7

A CLOMP(R)
p——z=Ap ——— Po,a

o CLOMP(R) attempts to solve ming « ||z — Ape |2

o Difficult to obtain guarantees for CLOMP(R): non-convex,
random...

@ More fundamentally: if we were able to exactly solve

gggllz — Apllz,

with X "low-dimensional" set of distribution (e.g. K-sparse
GMMs), do we have any guarantee 7

brzia—
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Information preservation guarantees 7

A Best algo. possible
p——z=Ap — p¢€ argnéigﬂz — Apl|2
p

@ Does z contains "enough" information to recover p € ¥ 7

61?4%#
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Information preservation guarantees 7

A Best algo. possible
p——z=Ap — p¢€ argnéigﬂz — Apl|2
p

@ Does z contains "enough" information to recover p € ¥ 7
o Isitstableifpg X7

Crria
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Information preservation guarantees 7

A Best algo. possible
p——z=Ap — p¢€ argnéigﬂz — Apl|2
p

@ Does z contains "enough" information to recover p € ¥ 7
o Isitstableifpg X7

o Is it stable to use Z instead of z 7

Crria
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Information preservation guarantees 7 Yes !

A Best algo. possible
p——z=Ap —— ﬁEargmigﬂz—Ap”Z
peE

Main result

(for a compact X, under some hypothesis on A)

i.4.d i.4.d.

e W.h.p. on (x1,...,Xxn) 'r'\'/p* and (w1, ..., wm) ~ A,

* = * _1
ya(p*,p) < bdry (p*,X) + O (N 2) +1,
o vx "kernel" metric [Sriperumbudur 2010]

o dpy total variation distance between p* and the model X
e 1) additive error in m
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Application to GMMs with compact set of parameters.

Crria
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Application to GMMs with compact set of parameters.

o K =1 (toy):
o n=0(8"™): Good !
o K >2:
on=0 (m_%): Worst possible !

n
o Global error in O (N_% + m_%): "compressive" approach ?

Crria
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Application to GMMs with compact set of parameters

o K =1 (toy):
o n=0(8"™): Good !
o K >2:
on=0 (m_%): Worst possible !
) "compressive" approach ?

T2

o Global error in O (N_% +m
o Conjecture: it is in fact much better !

10 f-0-K=5, m=525
~»-K=20, m=2100|
‘_D(Nfllz) .
! 10° 10° Crria—
m/((2n+1)K)
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Recent results (unpublished yet...)

o n=0(B™) for K-GMMs with fixed known > and
[y — 2 = O(Ink)
o May need more layers for unknown X ("sketching the
sketches...") : CNN !

o Can relate the "kernel" metric v, to traditional excess risk in
Machine Learning !

Crria
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Conclusion

Effective method to learn GMMs from a sketch, using greedy algorithms
and an efficient heuristic to design the sketching operator. Empirical and
theoretical motivations.

More...

o Faster algorithm for GMM with large K

@ More on theoretical guarantees
Future Work

o Application to other Mixture Models (a-stable...)

@ Generalized theoretical guarantees

@ Application to other kernel methods [Sutherland 2015]

(classification...) .

brzia—
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Keriven et al., Sketching for Large-Scale Learning of Mixture
Models, /CASSP 2016

Keriven et al., Sketching for Large-Scale Learning of Mixture
Models, arXiv:1606.02838

Soon : sketching toolbox
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