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Paths to Compressive Learning

Objective

Fit density pΘ on a large database (x1, ...,xN ) ∈ Rn.

x1 . . . xN

Training data

Θ

Parameters

y1 yN. . .

Compressed elements

z

Database sketch

Chosen method
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Approach : Generalized Compressive Sensing

Traditional Compressive Sensing (CS)

From y ≈Mx ∈ Rm recover vector x ∈ Rn

Linear M ∈ Rm×n with m < n

Typical assumption: sparse signal x =
∑

k∈Γ xkek.

Generalized Compressive Sensing

From z ≈ Ap ∈ Cm recover probability distribution p ∈ P

Must de�ne:

Linear operator A : P 7→ Cm

Generalized "sparsity": pΘ,α =
∑K

k=1 αkpθk
In�nite/continuous dictionary !
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Application to Compressive Learning

From theoretical Generalized CS...

p
A

−−−−→ z = Ap
Alg.

−−−−→ pΘ,α

...to practical Compressive Learning:

p̂ =
1

N

∑
i
δxi

A
−−−−→ ẑ = Ap̂

Alg.

−−−−→ pΘ̂,α̂

where (x1, ...,xN )
i.i.d.∼ p.

Questions:

Reconstruction algorithm ?

Choice of sketching operator A ?

Empirically/theoretically valid ?
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Approach

p
A

−−−−→ z = Ap
Alg.

−−−−→ pΘ,α

Cost function

min
Θ,α
‖z−ApΘ,α‖2

Similar to minx:‖x‖0≤s ‖y −Mx‖2 in CS.

Need approximate algorithms !
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Proposed Algorithm: quick overview

Greedy : progressively add components pθk
Inspired by OMP, adapted to continuous settings
Two versions

Compressive Learning OMP (CLOMP)
CLOMPR (with Replacement): slower but better results
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What is left ?

p
A

−−−−→ z = Ap
CLOMP (R)

−−−−−−−→ pΘ,α =
∑
k

αkpθk

To perform CLOMP(R), Apθ and ∇θApθ must have a closed-form

expression.

Here:
θ = (µ,σ) and pθ : GMMs with diagonal covariance

Soon-to-be-released toolbox:
K-means
full GMMs
GLLiM [Deleforge 2014]

α-stable (in progress)
User-de�ned ! (black-box implementation)
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Sketching operator

p
A

−−−−→ z = Ap
CLOMP (R)

−−−−−−−→ pΘ,α

Random Sampling of the characteristic function [Bourrier 2013]

Given (ω1, ...,ωm) ∈ Rn,

Ap =
[
Ex∼p(e

iωTx)
]
j=1,...,m

Closed-form for many models !

Analog to Random Fourier Sampling: (ω1, ...,ωm)
i.i.d.∼ Λ

ẑ =
[

1
N

∑
i e

iωT
j xi

]
j=1,...,m

easily computable (distributed,

GPU, streaming...)
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Designing the frequency distribution

The frequency distribution must "scale" with (the variances of) the GMM.

Approach 1 Optimize the variance of a Gaussian frequency distribution

Classical choice in kernel methods [Sutherland 2015]
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Designing the frequency distribution

The frequency distribution must "scale" with (the variances of) the GMM.

Approach 1 Optimize the variance of a Gaussian frequency distribution

Approach 2 Proposed:

Partial preprocessing to compute the appropriate "scaling"

The proposed distribution

Yields better precision in the reconstruction

Is 20× to 100× faster to design
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To summarize

p̂
X→Λ→A
−−−−−−−→ ẑ = Ap̂

CLOMP (R)

−−−−−−−→ pΘ,α

Given a database X = (x1, ...,xN ) ∈ Rn, m, K:
Design A

Partial preprocessing to choose the frequency distribution Λ
Draw m frequencies (ω1, ...,ωm) ∈ Rn

Compute ẑ = 1√
m

[
1
N

∑
i e

iωT
j xi

]
j=1,...,m

GPU, distributed computing, etc.

Estimate a K-GMM pΘ,α from ẑ using CLOMP(R).
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Reconstruction results

Comparison with EM (VLFeat toolbox) and previous Compressive Learning IHT

[Bourrier 2013]. KL-div (lower is better), n = 10, m = 5(2n + 1)K.
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Memory usage and computation time
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Remember : Sketching easily done on GPU/cluster
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Proof of concept : speaker veri�cation

NIST2005 database with MFCCs: N = 2 · 108

A large database indeed enhances the results

Limitations are observed for large K : di�cult "sparse
approximation" task of a non-sparse distribution
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Information preservation guarantees ?

p
A

−−−−→ z = Ap
CLOMP (R)

−−−−−−−→ pΘ,α

CLOMP(R) attempts to solve minΘ,α ‖z−ApΘ,α‖2
Di�cult to obtain guarantees for CLOMP(R): non-convex,
random...

More fundamentally: if we were able to exactly solve

min
p∈Σ
‖z−Ap‖2,

with Σ "low-dimensional" set of distribution (e.g. K-sparse
GMMs), do we have any guarantee ?
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Information preservation guarantees ?

p
A

−−−−→ z = Ap
Best algo. possible
−−−−−−−−−→ p̄ ∈ arg min

p∈Σ
‖z−Ap‖2

Does z contains "enough" information to recover p ∈ Σ ?

Is it stable if p /∈ Σ ?

Is it stable to use ẑ instead of z ?
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Information preservation guarantees ? Yes !

p̂
A

−−−−→ ẑ = Ap̂
Best algo. possible
−−−−−−−−−→ p̄ ∈ arg min

p∈Σ
‖ẑ−Ap‖2

Main result
(for a compact Σ, under some hypothesis on Λ)

W.h.p. on (x1, ...,xN )
i.i.d.∼ p∗ and (ω1, ...,ωm)

i.i.d.∼ Λ,

γΛ(p∗, p̄) ≤ 5dTV (p∗,Σ) +O
(
N−

1
2

)
+ η,

γΛ "kernel" metric [Sriperumbudur 2010]

dTV total variation distance between p∗ and the model Σ
η additive error in m
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Application to GMMs with compact set of parameters.

K = 1 (toy):
η = O(β−m): Good !

K ≥ 2:
η = O

(
m− 1

2

)
: Worst possible !

Global error in O
(
N− 1

2 +m− 1
2

)
: "compressive" approach ?

Conjecture: it is in fact much better !
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Recent results (unpublished yet...)

η = O(β−m) for K-GMMs with �xed known Σ and
‖µk − µk′‖2 ≥ O(ln k)

May need more layers for unknown Σ ("sketching the
sketches...") : CNN !

Can relate the "kernel" metric γΛ to traditional excess risk in
Machine Learning !
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Conclusion

Summary

E�ective method to learn GMMs from a sketch, using greedy algorithms
and an e�cient heuristic to design the sketching operator. Empirical and
theoretical motivations.

More...

Faster algorithm for GMM with large K

More on theoretical guarantees

Future Work

Application to other Mixture Models (α-stable...)

Generalized theoretical guarantees

Application to other kernel methods [Sutherland 2015]

(classi�cation...)
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Questions ?

Keriven et al., Sketching for Large-Scale Learning of Mixture

Models, ICASSP 2016

Keriven et al., Sketching for Large-Scale Learning of Mixture

Models, arXiv:1606.02838

Soon : sketching toolbox
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