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 PCA : 
 Classification : 
 Regression : 
 Density estimation :

Idea : compress the database beforehand.

• Large      (tall)
• See e.g. [Calderbank 2009]

• Large      (fat) « Big data »
• See e.g. [Cormode 2011]
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• Contains particular info 
about the database

• Maintained online
[Cormode 2011]

Knowledge about underlying
probability distribution

Recover « low-dimensional » object from
few linear measurements (ex : sparse vector, 
low-rank matrix…)

Sketch = measurements of 
underlying probability

distribution
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Generalized Compressive Sensing

Sparsity

Infinite, continuous dictionary !
(or                  )
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• « Ideal » decoding scheme
• NP-complete
• Two approaches:

• Convex relaxation
• Greedy

See [Foucart 2013]

• Ideal decoding scheme 
(Section 4)

• Highly non-convex
• Two approaches:

• Convex relaxation [Bunea 2010]

• Greedy Proposed

Alg.
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Orthogonal Matching Pursuit (OMP) 
[Mallat 1993, Pati 1993]

1. Add atom most correlated to residual

2. Perform Least-Squares

3. Repeat until desired sparsity

Compressive Learning OMPR 
(CLOMPR) (proposed)

1. Add atom most correlated to residual
with gradient descent

2. Perform Hard-Thresholding

3. Perform Non-Negative Least-Squares

4. Perform gradient descent on all 
parameters, initialized with current
ones

5. Repeat twice desired sparsity

OMP with Replacement (OMPR) 
[Jain 2011]

1. Add atom most correlated to residual

2. Perform Hard-Thresholding (if 
necessary)

3. Perform Least-Squares

4. Repeat twice desired sparsity

Similar to CoSAMP [Needell 2008] or SubSpace
Pursuit [Dai 2009]

We cannot just
add a 
component
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Must adjust « scale » of distribution

Adjust by hand

• Not that difficult…

• The method is quite
robust

Cross-validation

• Can be very long !

• Used in practice 
[Sutherland2015]

Automatic

• Partial pre-processing
• Heuristic based on 

GMMs-like distributions

Proposed
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Given database,      , 
1. Design

• Partial pre-processing to choose

• Draw

2. Compute

• Online, distributed, GPU…

3. Derive mixture model              with CLOMPR
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K-means (n=5, K=10)

GMMs, diagonal cov.   (n=5, K=5)

Comparison with
• Matlab’s kmeans
• VLFeat’s gmm

• Faster and more memory 
efficient on large databases

• Number of measurements
does not depend on N
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Application : spectral clustering

16/11/2016 Nicolas Keriven

Spectral clustering for 
classification [Uw 2001], 

augmented MNIST database
[Loosli 2007].

• CLOMPR performs 
better and is more 
stable with a large 
database

K-means (n=10, K=10, m=1000)

Mean and var. over 50 exp.
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Application : speaker recognition
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GMM  (n=12, K=64)

Classical method for speaker recognition [Reynolds 2000]  (for proof of 
concept) NIST 2005 database, MFCCs.

• Also performs better on a large database.

Variant of CLOMPR, 
faster at large K
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Information-preservation guarantees
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Solve cost func.

• Robustness to using                  instead of                  ?

• Robustness to      not being exactly a mixture model ?

• Guarantees in terms of usual learning cost functions ?
o K-means : sum of distances to closest centroid
o GMMs : negative log-likelihood

Guarantee for CLOMPR ? Difficult ! (non-convex, random…)
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16/11/2016 Nicolas Keriven

• Large enough separation
• - bounded domain

• Fourier features

If w.h.p.

Goal minimize
(expected risk)

Hyp.

L1 distance from p* to the set of (separated) GMMs
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Separation of means Size of sketch

Trade-off
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Number of measurements
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K-means GMMs, diagonal cov.

GMMs, known cov.
In theory, at least

Empirically ?

Relative
SSE

Relative 
loglike

Relative 
loglike
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1 : Proving non-uniform LRIP

Kernel mean embedding [Smola 2007]

Random (Fourier) Features [Rahimi 2007]

Hoeffding, Bernstein, chaining…

2 : Use       - coverings to extend to uniform LRIP

Ex : Quantization error
[Boufounos 2016]

• Finite-dimensional

• Infinite-dimensional

Easy !
Easy !

Difficult !

Basic Set Normalized Secant Set
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• mixtures of sufficiently 
separated distributions

•

with smooth

• « Smooth » Random Features

• Smooth risk

• « Smoother » Random Features

Ex : GMMs with unknown covariance

+ guarantees w.r.t. risk

Ex : Mixture of Diracs (K-means) with

Ex : 
• Mixtures of Diracs (K-means) with

• GMMs with known covariance

Bad !Sufficient Conditions
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Contributions

• Greedy algorithm for large-scale mixture learning from random
moments

• Efficient heuristic to design the sketching operator as Fourier 
sampling

• Application to mixtures of Diracs, GMMs

• Evaluation on synthetic and real data

• Information preservation guarantees using infinite-dimensional 
Compressive Sensing
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SketchMLbox (sketchml.gforge.inria.fr)

• Mixture of Diracs (« K-means »)

• GMMs with known covariance

• GMMs with unknown diagonal covariance

• Soon:

• Alpha-stable

• Gaussian Locally Linear Mapping [Deleforge 2014]

• Optimized for user-defined
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Recent result : locally block convex



Outlooks : extension of the methods

1. Bridge observed gap between theory and practice ?

16/11/2016 Nicolas Keriven 28/28



Outlooks : extension of the methods

1. Bridge observed gap between theory and practice ?
• Does not come from      - coverings

16/11/2016 Nicolas Keriven 28/28



Outlooks : extension of the methods

1. Bridge observed gap between theory and practice ?
• Does not come from      - coverings

• Improve concentration inequalities ?

16/11/2016 Nicolas Keriven 28/28



Outlooks : extension of the methods

1. Bridge observed gap between theory and practice ?
• Does not come from      - coverings

• Improve concentration inequalities ?

2. Extend framework to other tasks ?

16/11/2016 Nicolas Keriven 28/28



Outlooks : extension of the methods

1. Bridge observed gap between theory and practice ?
• Does not come from      - coverings

• Improve concentration inequalities ?

2. Extend framework to other tasks ?
• Recent paper submitted to AISTATS : PCA

16/11/2016 Nicolas Keriven 28/28



Outlooks : extension of the methods

1. Bridge observed gap between theory and practice ?
• Does not come from      - coverings

• Improve concentration inequalities ?

2. Extend framework to other tasks ?
• Recent paper submitted to AISTATS : PCA

• Other existing use of Fourier sketches ? : e.g. classification       
[Sutherland 2015]

16/11/2016 Nicolas Keriven 28/28



Outlooks : extension of the methods

1. Bridge observed gap between theory and practice ?
• Does not come from      - coverings

• Improve concentration inequalities ?

2. Extend framework to other tasks ?
• Recent paper submitted to AISTATS : PCA

• Other existing use of Fourier sketches ? : e.g. classification       
[Sutherland 2015]

• Other kernel methods (algorithmic ? Theoretical ?)

16/11/2016 Nicolas Keriven 28/28



Outlooks : extension of the methods

1. Bridge observed gap between theory and practice ?
• Does not come from      - coverings

• Improve concentration inequalities ?

2. Extend framework to other tasks ?
• Recent paper submitted to AISTATS : PCA

• Other existing use of Fourier sketches ? : e.g. classification       
[Sutherland 2015]

• Other kernel methods (algorithmic ? Theoretical ?)

3. Extension to multi-layer sketches ? (Neural networks…)

16/11/2016 Nicolas Keriven 28/28



Outlooks : extension of the methods

1. Bridge observed gap between theory and practice ?
• Does not come from      - coverings

• Improve concentration inequalities ?

2. Extend framework to other tasks ?
• Recent paper submitted to AISTATS : PCA

• Other existing use of Fourier sketches ? : e.g. classification       
[Sutherland 2015]

• Other kernel methods (algorithmic ? Theoretical ?)

3. Extension to multi-layer sketches ? (Neural networks…)
• May be adapted to e.g. GMMs with unknown covariance

16/11/2016 Nicolas Keriven 28/28



Outlooks : extension of the methods

1. Bridge observed gap between theory and practice ?
• Does not come from      - coverings

• Improve concentration inequalities ?

2. Extend framework to other tasks ?
• Recent paper submitted to AISTATS : PCA

• Other existing use of Fourier sketches ? : e.g. classification       
[Sutherland 2015]

• Other kernel methods (algorithmic ? Theoretical ?)

3. Extension to multi-layer sketches ? (Neural networks…)
• May be adapted to e.g. GMMs with unknown covariance

• Equivalence between LRIP and instance optimality still valid for 
non-linear operators !

16/11/2016 Nicolas Keriven 28/28



Outlooks : extension of the methods

1. Bridge observed gap between theory and practice ?
• Does not come from      - coverings

• Improve concentration inequalities ?

2. Extend framework to other tasks ?
• Recent paper submitted to AISTATS : PCA

• Other existing use of Fourier sketches ? : e.g. classification       
[Sutherland 2015]

• Other kernel methods (algorithmic ? Theoretical ?)
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• Equivalence between LRIP and instance optimality still valid for 
non-linear operators !

• CLOMPR and current sufficient conditions no longer valid…
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Thank you !
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• K., Bourrier, Gribonval, Perez. Sketching for Large-Scale Learning of Mixture Models ICASSP 
2016

• K., Bourrier, Gribonval, Perez. Sketching for Large-Scale Learning of Mixture Models
(extended version) submitted to Information and Inference, arXiv:1606.0238

• K., Tremblay, Gribonval, Traonmilin. Compressive K-means ICASSP 2017

• Gribonval, Blanchard, K., Traonmilin. Random moments for Sketched Statistical Learning
submitted to AISTATS 2017, extended version soon
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