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Context: machine learning
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4 . . )
Desired properties

- Fast to compute (distributed, streaming, GPU...)
- Preserve desired information
- Preserve data privacy
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Three compression schemes
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Feature

extraction d
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Compression ?
L1L2 . . Ln

Data = Collection of vectors

< n » || Subsampling , Linear sketch A

R , ||| coresets < n . || See [Thaper 2002]
d'| |71y to Ln || see eg 1 [Cormode 2011]
[Feldman 2010]
m| |z

. . . . o . .

Dimensionality reduction d| P tn Dlstrlbutfed,
See eg [Calderbank 2009, streaming
Boutsidis 2010] !

- Random Projection - Uniform sampling (naive) || _ 55k tables, histograms
- Feature selection - Adaptive sampling... - Sketching for learning ?
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Isotropic GMM estimation [Bourrier 2013]

[ Practical illustration: sketched Gaussian Mixture Model estimation with Id cov. [Bourrier 2013]]
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Isotropic GMM estimation [Bourrier 2013]

[ Practical illustration: sketched Gaussian Mixture Model estimation with Id cov. [Bourrier 2013]]

>

Random Fourier moments
Data °
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T1,..., Ty € R?
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Isotropic GMM estimation [Bourrier 2013]

[ Practical illustration: sketched Gaussian Mixture Model estimation with Id cov. [Bourrier 2013]]
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Isotropic GMM estimation [Bourrier 2013]

[ Practical illustration: sketched Gaussian Mixture Model estimation with Id cov. [Bourrier 2013]]

. Modified Iterative
Random Fourier moments ﬁ Hard Thresholding @ @
Data ° > > ©
Sketch

-6 -4 -2 0 2 4 6 45-5 k -4 -2 0 2 4 6
T1, ., Ty € RY > i wiN (1)

Observation: necessarily...

Any linear sketch = empirical moments

7 =Eo(X)|= L1, &(x;)
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Isotropic GMM estimation [Bourrier 2013]

[ Practical illustration: sketched Gaussian Mixture Model estimation with Id cov. [Bourrier 2013]]

. Modified Iterative
Random Fourier moments ﬁ Hard Thresholding @ @
Data ° > > ©
Sketch

-6 -4 -2 0 2 4 6 45-5 k -4 -2 0 2 4 6
T1, ., Ty € RY > i wiN (1)

Observation: necessarily...

Any linear sketch = empirical moments

2= EB(X)|= 1 %, 8(x)

n

d : R4 — C™
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Isotropic GMM estimation [Bourrier 2013]

[ Practical illustration: sketched Gaussian Mixture Model estimation with Id cov. [Bourrier 2013]]

Random Fouri Modified Iterative
andom Fourier moments Hard Thresholding © O
Data * > > ° ©
ey Sketch PR R TN
T1, ., Ty € RY > i wiN (1)
Observation: necessarily... ... hence:
Any linear sketch = empirical moments Sketch learning = moment matching
5 =Eo(X)= 13, &(x;) [ ming ||z — Eo®(X)|| J
n ? T
d : R4 — C™ True moments (param.f) )
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Isotropic GMM estimation [Bourrier 2013]

[ Practical illustration: sketched Gaussian Mixture Model estimation with Id cov. [Bourrier 2013]]

Random Fouri Modified Iterative
andom Fourier moments Hard Thresholding © O
Data * > > ° ©
ey Sketch PR R TN
T1, ., Ty € RY > i wiN (1)
Observation: necessarily... ... hence:
Any linear sketch = empirical moments Sketch learning = moment matching
5 =Eo(X)= 13, &(x;) [ ming ||z — Eo®(X)|| J
n ? T
d : R4 — C™ True moments (param.f) )

Good empirical properties of the « sketching » function

-« Sufficient » dimension 770 (size of the sketch)
- Randomly designed
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Contributions

Questions

» Generalize to other (mixture) models?
» Theoretical guarantees?
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Contributions

Questions

» Generalize to other (mixture) models?
» Theoretical guarantees?

Outline

» lllustration: heuristic greedy algorithm for other sketched mixture
model estimation

» Theoretical analysis: Information-preservation guarantees

* |deas from Compressive Sensing
* Low-dimensional models (in the space of measures)
e Random linear operators

* Kernel mean embedding + Random features

* Prove RIP-like conditions on sparse measures (sums of Diracs)
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@ lllustration: Sketched Mixture Model Estimation

Information-preservation guarantees

@ Restricted Isometry Property

Application: mixture model with separation assumption

Conclusion, outlooks
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Sketched mixture model estimation [Keriven et al 2016]
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Sketched mixture model estimation [Keriven et al 2016]

Moment

g matching © N©)

=EP(X

Goal

- Estimate mixture model:
k
Ti ™~ ) 11 Wiy,
wq 22 O, E{:EIUI =1

from sketch 7 — [E® (X)
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Sketched mixture model estimation [Keriven et al 2016]

Moment

g matching © N©)

=EP(X

Goal

- Estimate mixture model:

k
[ﬂ?i ~ D - wﬂTeJ

wy 22 O, E{:EIUI =1

from sketch 7 — [E® (X)
Ex: g = N (1, 2)
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Sketched mixture model estimation [Keriven et al 2016]

Moment

g matching O @
,/"\‘(»\19)
(+)

E®(X

Goal Method: moment matching
- Estimate mixture model: _
Written as

k
(i~ Xy wim o [2—
Z : lwz > 0, lZ;w; =1 [ NG, HZ - Zl:l wlf(gl)Hz ]

from sketch 7 — &P (X) where

Ex: 7y :N(M,E) f(@) = ]EXNWQ(I)(X)
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Sketched mixture model estimation [Keriven et al 2016]

Moment
g matching O) @
’,/"'\‘(»\\;/:D)
)]
| 0
=EP(X
Goal Method: moment matching

- Estimate mixture model:

k
(i~ Xy wim o [2—
Z : lwz > 0, lZ;w; =1 [ NG, HZ - Zl:l wlf(gl)Hz ]

from sketch 7 — &P (X) where

Written as

Ex: 7y :N(M,E) f(@) = ]EXNWQ(I)(X)

* (Highly) non-convex

» Convex relaxation? (super-resolution)

* Proposed approach: greedy heuristic
(continuous adaptation of OMP)
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Sketched mixture model estimation [Keriven et al 2016]

Moment

g matching © - (©

=EP(X

Goal Method: moment matching

- Estimate mixture model:

k
(i~ Xy wim o [2—
Z : 1'w£ > 0, lZ,z’w.c =1 [ NG, HZ - Zl:l wlf(gl)Hz ]

Written as

from sketch 7 — &P (X) where
0) =Ex~r, ®(X
Ex: 19 = N (p, ) () Xromg P(X)
* (Highly) non-convex * Can be applied as soon as f(0) = E,, ®(X)
» Convex relaxation? (super-resolution) is computable
* Proposed approach: greedy heuristic * |n practice: ® random Fourier sampling
(continuous adaptation of OMP) (closed-form characteristic function)

6/25
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Gaussian mixture models

GMM with diagonal cov.
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Gaussian mixture models

GMM with diagonal cov.
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d =10, k=20, m =2000
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Gaussian mixture models
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Gaussian mixture models

GMM with diagonal cov. d = 10, k=20, m = 2000

10°

“CL-OMPR
$-EM1
EM10

O

O 1 Qe O - o
102+ Faster than EM
(VLFeat’s gmm)
1073 ‘ ‘
102 10% 10°

Size of database

Application: speaker verification [Reynolds 2000] (d=12, k=64)

* EM on 300 000 vectors : 29.53

e 20kB sketch computed on 50 GB database: 28.96
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Compressive k-means [Keriven et al 2017]

Mixture of Diracs
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Compressive k-means [Keriven et al 2017]

Mixture of Diracs o _
Application: Spectral clustering

for MINIST classification [Uw 2001]

° (d=10, k=10, m=1000)
n =70 000 n =1 000 000
— . 1
|
: 0.95
09 |
S ! 0.9
=085 !
o - _-— . [
S 5 = | L 085 L | N
. o
Classif. Perf. 0.8 . I
. Perf. ki : 0.8 !
24 I
30.75 ' | |
< L 075
07 ! - '
' I —kmeans 0.7 1
1 |— CL-OMPR + .
1 rep. 5 rep. 1 rep. 5 rep.
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Mixtures of alpha-stable distribution

Mixture of stable dist.

©

G

EEM £ psLx s

llllllllllllllllll



Mixtures of alpha-stable distribution

Mixture of stable dist.
Toy example

© * CL-OMPR withd =10,k =3
» 1072 precision in 80 sec

(2
* MCMCwithd=1,k=3

» 10! precision in 1.5 hours
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Mixtures of alpha-stable distribution

Mixture of stable dist.
Toy example

© e CL-OMPR withd =10, k=3

» 1072 precision in 80 sec

5 + MCMCwithd=1,k=3

» 10! precision in 1.5 hours

Application: audio source
separation [submitted]

SDR (dB) SIR (dB) MER (dB)
Oracle 8.33+£3.16 | 18.3+4.13 N/A
Model: hybrid between Gaussian (EM) | 3.50 £2.87 | 9.04+4.92 | 123+11.0
rank-1 alpha-stable and CF-a 411+259 | 917+3.51 | 12.65+9.73

Gaussian noise...

EEM £ psLx 9/25
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How big a sketch 7
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How big a sketch 7

10°
m/(kd) m/(kd)

Relative sketch size m/(kd)

Sufficient sketch size

m ~ O(kd)
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@ lllustration: Sketched Mixture Model Estimation

Information-preservation guarantees

@ Restricted Isometry Property

Application: mixture model with separation assumption

Conclusion, outlooks
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Linear inverse problem
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Linear inverse problem
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Linear inverse problem

..
True distribution: [xb...,a:n " W*J

Reformulation of the sketching
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Linear inverse problem

..
True distribution: [xb...,a:n " W*J

Reformulation of the sketching

* - Linear operator:

.Aﬂ' — ]EXNW(I)(X)
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Linear inverse problem

..
True distribution: [xb...,a:n " W*J

Reformulation of the sketching

- Linear operator:

* Estimation problem = linear inverse Am = ]EXNW(I)(X)

problem on measures _ .
-« Noisy » linear measurement:

2=Ar*té |

Noise € = E@(X) — E+®(X) small
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Linear inverse problem

> D

..
True distribution: [xb...,a:n " W*J

Reformulation of the sketching

- Linear operator:

* Estimation problem = linear inverse Am = ]EXNW(I)(X)

problem on measures _ .
-« Noisy » linear measurement:

° ill- | ~ J~
Extremely ill-posed ! [ 2 = An* + é ]

Noise € = E@(X) — E+®(X) small

Nicolas Keriven @l’sl\/ﬂ E@ﬁs PSL* 11/25
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Linear inverse problem

Solve ‘

o Moment matching @)

* Estimation problem = linear inverse
problem on measures

* Extremely ill-posed !

* Feasibility? (information-preservation)

Nicolas Keriven

> ° D

..
True distribution: [xb...,a:n " W*J

Reformulation of the sketching

- Linear operator:
.Aﬂ' = ]EXNW(I)(X)
-« Noisy » linear measurement:
| 2=Ar* +é |

Noise € = E@(X) — E+®(X) small
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Information preservation guarantees
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Information preservation guarantees
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Information preservation guarantees

S : Model set of « simple »
P .
distributions (eg. GMMs)

Goal

Prove the existence of a decoder /\ robust
to noise and stable to modeling error.

« Instance-optimal » decoder
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Information preservation guarantees

D S : Model set of « simple » D
distributions (eg. GMMs)

A A
Ccm cm
5 a—r / v /
+e ) G
Goal Lower Restricted Isometry Property
Prove the existence of a decoder /\ robust / /
to noise and stable to modeling error. ”U — 0 H 5 HAU — Ao H?

« Instance-optimal » decoder
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Information preservation guarantees

D S : Model set of « simple » D
distributions (eg. GMMs)

—
<

A(z) € argmingeg ||z — Ao|[2

Cost function used in practice (Part 1) !

Cm

=

Goal Lower Restricted Isometry Property

Prove the existence of a decoder /\ robust / /
to noise and stable to modeling error. ”U — 0 H 5 HAU — Ao H?

« Instance-optimal » decoder
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Information preservation guarantees

D S : Model set of « simple » D
distributions (eg. GMMs)

—
<

A(z) € argmingeg ||z — Ao|[2

Cost function used in practice (Part 1) !

Cm

=

Goal Lower Restricted Isometry Property

Prove the existence of a decoder /\ robust / /
to noise and stable to modeling error. ”U — 0 H 5 HAU — Ao H?

« Instance-optimal » decoder

New goal: find/construct models (5 and operators A that satisfy the LRIP (w.h.p.)
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Mathematical framework: mean kernel, random features

Goal: LRIP w.h.p. on A, Vo,0’ € G, |0 — d'|| S |[Ac — Ad’'||2.
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Mathematical framework: mean kernel, random features

Goal: LRIP w.h.p. on A, Vo,0’ € G, |0 — d'|| S |[Ac — Ad’'||2.

Metric: mean kernel
[Gretton 2006, Borgwardt 2006]
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Mathematical framework: mean kernel, random features

Goal: LRIP w.h.p. on A, Vo,0’ € G, |0 — d'|| S |[Ac — Ad’'||2.

Metric: mean kernel
[Gretton 2006, Borgwardt 2006]

Reproducing kernel:
adjustable geometry on any set of objects

k(x,x') < : >
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Mathematical framework: mean kernel, random features

Goal: IRIP w.h.p. on A, Vo,0’ € &, ||o — o’|| < || Ao — Ad’||2.

Metric: mean kernel
[Gretton 2006, Borgwardt 2006]

Reproducing kernel:
adjustable geometry on any set of objects

k(x,x') < : >

\m(ﬂ,ﬂ’) = Ex(X, X')

Kernel between distributions of objects
- i- Adjustable
f /
BN R/ (|77
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Mathematical framework: mean kernel, random features

Goal: IRIP w.h.p. on A, Vo,0’ € &, ||o — o’|| < || Ao — Ad’||2.

Metric: mean kernel Sketching operator: Random Features
[Gretton 2006, Borgwardt 2006] [Rahimi 2007]

Reproducing kernel:
adjustable geometry on any set of objects

k(x,x') < : >

\m(ﬂ,ﬂ’) = Ex(X, X')

Kernel between distributions of objects
- i- Adjustable
f /
BN R/ (|77
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Mathematical framework: mean kernel, random features

Goal: IRIP w.h.p. on A, Vo,0’ € &, ||o — o’|| < || Ao — Ad’||2.

Metric: mean kernel Sketching operator: Random Features
[Gretton 2006, Borgwardt 2006] [Rahimi 2007]
Reproducing kernel: Random & : R% —s C™ such that:

adjustable geometry on any set of objects

) < ) ) s, o) & 2(z) e ()

\m(ﬂ,ﬂ’) = Ex(X, X')

Kernel between distributions of objects
- i- Adjustable
f /
BN R/ (|77
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Mathematical framework: mean kernel, random features

Goal: LRIP w.h.p. on A, Vo,0’ € G, |0 — d'|| S |[Ac — Ad’'||2.

Metric: mean kernel
[Gretton 2006, Borgwardt 2006]

Reproducing kernel:
adjustable geometry on any set of objects

k(x,x') < : >

\m(ﬂ,ﬂ’) = Ex(X, X')

Kernel between distributions of objects

<- -> [ Adjustable J
N B/ |77

Sketching operator: Random Features
[Rahimi 2007]

Random & : R — C™ such that:
k(x,x') = &(x)*P(2)
Ar = Ex o ®(X)
Basis for the RIP

| = 7|I% = [|A(T = 7)3
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Mathematical framework: mean kernel, random features

Goal: LRIP w.h.p. on A, Vo,0’ € G, |0 — d'|| S |[Ac — Ad’'||2.

Metric: mean kernel
[Gretton 2006, Borgwardt 2006]

Reproducing kernel:
adjustable geometry on any set of objects

k(x,x') < : >

\m(ﬂ,ﬂ’) = Ex(X, X')

Kernel between distributions of objects

<- -> [ Adjustable J
N B/ |77

Sketching operator: Random Features
[Rahimi 2007]

Random & : R? — C™ such that:
k(z,x') =~ &(x)*®(x)
l Ar = Exun®(X)
Basis for the RIP
|7 —lI% &= A =715

[ Bernstein... ]
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Mathematical framework: mean kernel, random features

Goal: LRIP w.h.p. on A, Vo,0’ € G, |0 — d'|| S |[Ac — Ad’'||2.

Metric: mean kernel
[Gretton 2006, Borgwardt 2006]

Reproducing kernel:
adjustable geometry on any set of objects

k(x,x') < : >

\m(ﬂ,ﬂ’) = Ex(X, X')

Kernel between distributions of objects

<- -> [ Adjustable J
N B/ |77

Sketching operator: Random Features
[Rahimi 2007]

Random & : R? — C™ such that:
k(z,x') =~ &(x)*®(x)
l Ar = Exun®(X)
Basis for the RIP
|7 —lI% &= A =715

[ Bernstein... ]

Ideally...

Number of random features =
intrinsic dimensionality of the problem
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Normalized secant set

Reformulation of the LRIP

Goal: LRIP ||o — o'[|x S [[A(o —o’)||2
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Normalized secant set

Reformulation of the LRIP

Goal: LRIP ||o — o'[|x S [[A(o —o’)||2

{1 S 1G]
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Goal: lRIP  W.h.p. on A, Vs € Gg, 1 < || As||2.

CEM £k psL* 15/25

llllllllllllllllll



Proving the LRIP

Goal: lRIP  W.h.p. on A, Vs € Gg, 1 < || As||2.

(1) Pointwise LRIP Vs, w.h.p. on A, LRIP.

CBEM £ psLx 15/25

llllllllllllllllll



Proving the LRIP

Goal: lRIP  W.h.p. on A, Vs € Gg, 1 < || As||2.

(1) Pointwise LRIP Vs, w.h.p. on A, LRIP.

@ Extension to LRIP:

covering numbers

CBEM £ psLx 15/25

llllllllllllllllll



Proving the LRIP

Goal: lRIP  W.h.p. on A, Vs € Gg, 1 < || As||2.

(1) Pointwise LRIP Vs, w.h.p. on A, LRIP.

@ Extension to LRIP:

covering numbers

Nicolas Keriven @l‘sl\/l-l E@S PSL* 15/25

uuuuuuuuuuuuuuuuu



Proving the LRIP

Goal: LRIP W.h.p. on .A, Vs € 6g, 1 S HAS”Q

(1) Pointwise LRIP Vs, w.h.p. on A, LRIP.

@ Extension to LRIP:

covering numbers

Nicolas Keriven @[5|_\/|ﬂ PSL * 15/25

lllllllllllllllll



Proving the LRIP

Goal: LRIP W.h.p. on .A, Vs € 6g, 1 S HAS”Q

(1) Pointwise LRIP Vs, w.h.p. on A, LRIP.

N\ /
N/
@ Extension to LRIP:

covering numbers

w.h.p. on A, Vs, LRIP.
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Main result [Keriven 2016]
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Main hypothesis

The normalized secant set S(G) has finite covering numbers.

Result

For [m > (C' x log(cov. num.)],

[ Quality of pointwise LRIP ] [ Dimensionality of the model ]

W.h.p.
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Main result [Keriven 2016]

Main hypothesis

The normalized secant set S(G) has finite covering numbers.

Result

For [m > (C' x log(cov. num.)],

[ Quality of pointwise LRIP ] [ Dimensionality of the model ]

W.h.p.

[ Modeling error ] [ Empirical noise ]

7 7
|7 = A(2)]| < d(7*,6) + O(1/v/n)

- Classic Compressive Sensing: finite dimension: Known
- Here: infinite dimension: Technical
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First results

Simplified hyp.: the model itself & is compact (instead of S(S))
7~ A@)l; £ d(r*, 8) + 01/ Vi) +Hoa/vm)

MMD [ Sub-optimal ! ]

Application to:
- GMM with diagonal covariance
- Mixture of elliptic stable distributions (no existing estimator)

Questions:
- Getrid of the O(1/y/m) ?
- Replace || - ||x with another metric for learning?
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@ lllustration: Sketched Mixture Model Estimation

Information-preservation guarantees

@ Restricted Isometry Property

Application: mixture model with separation assumption

Conclusion, outlooks
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Fine control for mixture models

[Gribonval, Blanchard, Keriven, Traonmilin 2017]

; Main difficulty
Ss = { || UU_—UU, || } Controlling metrics between distributions in the model that
" get close to each other in infinite-dimensional space
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; Main difficulty
Ss = { || GU_—JU, || } Controlling metrics between distributions in the model that
" get close to each other in infinite-dimensional space

Case of mixture models
| D>, wime, — >, wfﬂggHﬁg — 0 : what happens 7

® o L] L]
> <« .
® |
No hypothesis Separation hypothesis
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— | N’ x| 38
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Compressive statistical learning

[Gribonval, Blanchard, Keriven, Traonmilin 2017]

k-means with mixtures of Diracs

(no assumption

Hypotheses
yp on the data)

£ - separated centroids

- M -bounded domain for centroids

Sketch
- Adjusted Fourier features (for technical
reasons)
Result

- W.r.t. k-means usual cost (SSE)

GMM with known covariance

Hypotheses
- Sufficiently separated means
- Bounded domain for means

Sketch
- Fourier features

Result
- With respect to log-likelihood

Sketch size

m > O (k*d*polylog(k,d)log(M/e))
N

Sketch size

m > O(k*d*polylog(k,d)o(sep.))
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[ Recently (not published yet) ] /
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Compressive statistical learning

[Gribonval, Blanchard, Keriven, Traonmilin 2017]
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Hypotheses (Zotzsssr'lp j’b” Hypotheses
- £ -separated centroids on the dara - Sufficiently separated means
- M- bounded domain for centroids - Bounded domain for means
Sketch Sketch
- Adjusted Fourier features (for technical - Fourier features
reasons)
Result Result
- W.r.t. k-means usual cost (SSE) - With respect to log-likelihood
Sketch size Sketch size

m > O (k?d*polylog(k,d)log(M/e))|| | |lm > O(k*d*polylog(k,d)p(sep.))
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[ Recently (not published yet) ] /

d2 — d m > C x log(cov. num.)
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GMM trade-off
((‘s“ < Trade-off R

Separation of means Size of sketch
Separation of means Number of measurements
M
High O(/dTog k) m > O(k2d - polylog(k, d))
Freg. O(v/d+logk) m > O(k3d - polylog(k,d))
O(l1ogk) m > O(k*de? - polylog(k,d))
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@ lllustration: Sketched Mixture Model Estimation

Information-preservation guarantees

@ Restricted Isometry Property

Application: mixture model with separation assumption

Conclusion, outlooks
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Sketch learning

e Sketching method for large-scale density estimation
* Well-adapted to distributed or streaming context
* Focus on mixture model estimation
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Summary of contributions

* Practical illustration: flexible heuristic algorithm for any sketched

mixture model estimation
e GMM with diagonal covariance
 k-means (mixture of Diracs)
* Mixture of multivariate elliptic stable distributions
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Summary of contributions

* Practical illustration: flexible heuristic algorithm for any sketched

mixture model estimation
e GMM with diagonal covariance
 k-means (mixture of Diracs)
* Mixture of multivariate elliptic stable distributions

* Information-preservation guarantees
* Infinite dimensional Compressive Sensing (Restricted isometry property)
* Kernel methods on distributions (Kernel mean, Random features)

* Generic assumptions of low-dimensionality of the model set

* Focus on mixture models
* Estimator of mixture of multivariate elliptic stable distributions
e Statistical learning with controlled sketch size for k-means, sketched
GMM with known covariance

T 5 PSL¥ s
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Outlook : convex relaxation [with G. Peyré, C. Poon]

Algorithm with guarantees?
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Outlook : convex relaxation [with G. Peyré, C. Poon]

Algorithm with guarantees?
* Convex relaxation: super-resolution

min,, 1 ||z — Aul|* + M| gl rv

e Dual formulation: SDP...

2.5

—p_1Km(f) — UKD 2
=)
0.8 : 2 : !
1.5
0.4 ] 1
0.5¢ |
N AT I W N Tang2015
—0(.)05 0.05 —(905 0.05

0 0
f f
» Extend to any kernels with random features

» Application in machine learning...
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Outlook : dimensionality

* Combine with dimension reduction? [a. chatalic]
* First map in low-dimension, then sketch
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Outlook : dimensionality

* Combine with dimension reduction? [a. chatalic]
* First map in low-dimension, then sketch
e Use fast transforms [eg. Le 2013]

Eg.

[Boutsidis 2010] | | ) , Our guarantees
L1 ... Ln, > |17 Ty . .. 18 > | Z

* More generally, extend the idea
Random sampling = intrinsic dimensionality

Oliva2016
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Outlook : neural networks

e Extension to multi-layer sketches ?
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X

Multiplication by
frequencies
(aka weights)

W'X
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e Extension to multi-layer sketches ?

X

Multiplication by
frequencies
(aka weights)

W'X

P (WX)

Complex

exponential

(aka pointwise non-

linearity)
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Outlook : neural networks

e Extension to multi-layer sketches ?

Average
(aka

pooling)
X p(WIX) | — |z

Multiplication by

frequencies Complex exponential
(aka weights) (aka pointwise non-
linearity)
W 'X
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Outlook : neural networks

e Extension to multi-layer sketches ?

Average
(aka

pooling)
X p(WIX) | —— |22y . 12

Multiplication by

frequencies Complex exponential
(aka weights) (aka pointwise non-
linearity) e
wiz -~
T
W X Convolutional kernel
networks [Mairal 2014]
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Outlook : neural networks

e Extension to multi-layer sketches ?

Average
(aka

pooling)
X p(WIX) | —— |22y . 12

Multiplication by

frequencies Complex exponential
(aka weights) (aka pointwise non-
linearity)

W;Z/

- « Level-2 kernel »
W'X

: - Convolutional kernel
K('ﬂ',’ﬂ") — €—§||71'—7T [ networks [Mairal 2014]
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Outlook : neural networks

e Extension to multi-layer sketches ?

* Equivalence between LRIP and robust information-preservation
still valid for non-linear operators

Average
(aka

pooling)
X p(WIX) | —— |22y . 12

Multiplication by

frequencies Complex exponential
(aka weights) (aka pointwise non-
linearity) -
wiz -~
- « Level-2 kernel »
W' X ) - Convolutional kernel
K('ﬂ', ﬂ-’) — e 2 |7 —7" |5 networks [Mairal 2014]
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Thank you !

» Keriven, Bourrier, Gribonval, Pérez. Sketching for Large-Scale Learning of Mixture
Models Information & Inference: a Journal of the IMA, 2017. <arXiv:1606.02838>

e Keriven, Tremblay, Traonmilin, Gribonval. Compressive k-means /CASSP, 2017.

e Gribonval, Blanchard, Keriven, Traonmilin. Compressive Statistical Learning with
Random Feature Moments. Preprint 2017. <arXiv:1706.07180>

* Keriven. Sketching for Large-Scale Learning of Mixture Models. PhD Thesis.
<tel-01620815>

* Code: sketchml.gforge.inria.fr




