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- etc…

Context: machine learning

Nicolas Keriven

Task

= cat

Small intermediate
representation

Distributed database

Large database

Idea!       

Desired properties
- Fast to compute (distributed, streaming, GPU…)
- Preserve desired information
- Preserve data privacy

Slow, costly

Learning

1: Compression

2: Learning

Large elements
Billions of elements
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Linear sketch
See [Thaper 2002]
[Cormode 2011]

- Hash tables, histograms
- Sketching for learning ?

Subsampling
coresets
See eg
[Feldman 2010]

- Uniform sampling (naive)
- Adaptive sampling…

Three compression schemes
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Data = Collection of vectors

Feature
extraction

.   .   .

.   .   .

Dimensionality reduction
See eg [Calderbank 2009, 

Boutsidis 2010]

- Random Projection
- Feature selection

Compression ?
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streaming

Database
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Random Fourier moments
Modified Iterative
Hard Thresholding

Sketch

Practical illustration: sketched Gaussian Mixture Model estimation with Id cov. [Bourrier 2013]

Data

Observation: necessarily…

Any linear sketch = empirical moments

… hence:

Sketch learning = moment matching

True moments (param.    )

Good empirical properties of the « sketching » function

- « Sufficient » dimension         (size of the sketch)

- Randomly designed
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Questions

 Generalize to other (mixture) models?
 Theoretical guarantees?

Outline

 Illustration: heuristic greedy algorithm for other sketched mixture 
model estimation

 Theoretical analysis: Information-preservation guarantees
• Ideas from Compressive Sensing 

• Low-dimensional models (in the space of measures)
• Random linear operators

• Kernel mean embedding + Random features
• Prove RIP-like conditions on sparse measures (sums of Diracs)
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Illustration: Sketched Mixture Model Estimation

Information-preservation guarantees

Restricted Isometry Property

Application: mixture model with separation assumption

Conclusion, outlooks



Sketched mixture model estimation [Keriven et al 2016]

Nicolas Keriven

Moment
matching

6/25



- Estimate mixture model:

from sketch

Sketched mixture model estimation [Keriven et al 2016]

Nicolas Keriven

Goal

Moment
matching

6/25



- Estimate mixture model:

from sketch

Ex:

Sketched mixture model estimation [Keriven et al 2016]

Nicolas Keriven

Goal

Moment
matching

6/25



- Estimate mixture model:

from sketch

Ex:

Sketched mixture model estimation [Keriven et al 2016]

Nicolas Keriven

Goal Method: moment matching

where

Moment
matching

Written as

6/25



- Estimate mixture model:

from sketch

Ex:

Sketched mixture model estimation [Keriven et al 2016]

Nicolas Keriven

• (Highly) non-convex
• Convex relaxation? (super-resolution)
• Proposed approach: greedy heuristic 
(continuous adaptation of OMP)

Goal Method: moment matching

where

Moment
matching

Written as

6/25



- Estimate mixture model:

from sketch

Ex:

Sketched mixture model estimation [Keriven et al 2016]

Nicolas Keriven

• (Highly) non-convex
• Convex relaxation? (super-resolution)
• Proposed approach: greedy heuristic 
(continuous adaptation of OMP)

Goal Method: moment matching

where

Moment
matching

Written as

• Can be applied as soon as                                
is computable

• In practice:       random Fourier sampling             
(closed-form characteristic function)
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GMM with diagonal cov.

Gaussian mixture models
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d = 10, k = 20, m = 2000

Size of database

Error

Application: speaker verification [Reynolds 2000] (d=12, k=64)

• EM on 300 000 vectors : 29.53

• 20kB sketch computed on 50 GB database: 28.96

Faster than EM
(VLFeat’s gmm)
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Mixture of Diracs

Compressive k-means [Keriven et al 2017]
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Application: Spectral clustering
for MNIST classification [Uw 2001]

(d=10, k=10, m=1000)

Classif. Perf.
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Toy example

• CL-OMPR with d = 10, k = 3
 10-2 precision in 80 sec

• MCMC with d = 1, k = 3
 10-1 precision in 1.5 hours

Mixtures of alpha-stable distribution

Nicolas Keriven

Application: audio source 

separation [submitted]

Model: hybrid between
rank-1 alpha-stable and 
Gaussian noise…
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- Linear operator:

- « Noisy » linear measurement:

Noise                                                         small

True distribution:

Linear inverse problem

Nicolas Keriven

Reformulation of the sketching

• Estimation problem = linear inverse 
problem on measures

• Extremely ill-posed !

• Feasibility? (information-preservation)

Moment matching

Solve
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: Model set of « simple » 
distributions (eg. GMMs)

Information preservation guarantees

Nicolas Keriven

New goal: find/construct models and operators that satisfy the LRIP (w.h.p.)

Cost function used in practice (Part 1) !

Goal
Prove the existence of a decoder robust
to noise and stable to modeling error. 

Lower Restricted Isometry Property

« Instance-optimal » decoder
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Metric: mean kernel
[Gretton 2006, Borgwardt 2006]

Reproducing kernel:
adjustable geometry on any set of objects

Kernel between distributions of objects

Sketching operator: Random Features
[Rahimi 2007]

Basis for the RIP

Random such that:

Adjustable

Goal: LRIP

Ideally…
Number of random features =           

intrinsic dimensionality of the problem

Bernstein…
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Main result [Keriven 2016]

Nicolas Keriven

Main hypothesis

The normalized secant set    has finite covering numbers.

Quality of pointwise LRIP Dimensionality of the model

Modeling error

- Classic Compressive Sensing: finite dimension: Known
- Here: infinite dimension: Technical

Empirical noise
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First results
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Simplified hyp.: the model itself is compact (instead of            )

Application to:
- GMM with diagonal covariance
- Mixture of elliptic stable distributions (no existing estimator)

Sub-optimal !

Questions:
- Get rid of the                     ?
- Replace            with another metric for learning?

MMD
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Information-preservation guarantees

Restricted Isometry Property

Application: mixture model with separation assumption

Conclusion, outlooks
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Fine control for mixture models
[Gribonval, Blanchard, Keriven, Traonmilin 2017]

Nicolas Keriven

Main difficulty
Controlling metrics between distributions in the model that

get close to each other in infinite-dimensional space

No hypothesis Separation hypothesis

Case of mixture models

Separation
hypothesis
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Sketch size

Hypotheses
- Sufficiently separated means
- Bounded domain for means

Sketch
- Fourier features

Result
- With respect to log-likelihood

Sketch size

(no assumption
on the data)

Recently (not published yet)
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GMM trade-off

Nicolas Keriven

Separation of means Size of sketch

Trade-off

More
High
Freq.
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Outline

Nicolas Keriven

Illustration: Sketched Mixture Model Estimation

Information-preservation guarantees

Restricted Isometry Property

Application: mixture model with separation assumption

Conclusion, outlooks



Sketch learning

Nicolas Keriven

• Sketching method for large-scale density estimation
• Well-adapted to distributed or streaming context
• Focus on mixture model estimation
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Summary of contributions

Nicolas Keriven

• Practical illustration: flexible heuristic algorithm for any sketched
mixture model estimation
• GMM with diagonal covariance
• k-means (mixture of Diracs)
• Mixture of multivariate elliptic stable distributions
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Summary of contributions

Nicolas Keriven

• Information-preservation guarantees 
• Infinite dimensional Compressive Sensing (Restricted isometry property)

• Kernel methods on distributions (Kernel mean, Random features)

• Generic assumptions of low-dimensionality of the model set

• Focus on mixture models
• Estimator of mixture of multivariate elliptic stable distributions
• Statistical learning with controlled sketch size for k-means, sketched 

GMM with known covariance

• Practical illustration: flexible heuristic algorithm for any sketched
mixture model estimation
• GMM with diagonal covariance
• k-means (mixture of Diracs)
• Mixture of multivariate elliptic stable distributions

22/25
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Outlook : convex relaxation [with G. Peyré, C. Poon]

Nicolas Keriven

Algorithm with guarantees?

• Convex relaxation: super-resolution

• Dual formulation: SDP…

 Extend to any kernels with random features
 Application in machine learning…

Tang2015
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Outlook : dimensionality

• Combine with dimension reduction? [A. Chatalic]

• First map in low-dimension, then sketch

• Use fast transforms [eg. Le 2013]

• More generally, extend the idea

Random sampling = intrinsic dimensionality

Nicolas Keriven

.   .   . .   .   .

Eg.
[Boutsidis 2010] Our guarantees

Oliva2016
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Outlook : neural networks

• Extension to multi-layer sketches ? 
• Equivalence between LRIP and robust information-preservation 

still valid for non-linear operators

Nicolas Keriven12/10/2017

Multiplication by 
frequencies
(aka weights)

Average
(aka
pooling)

Complex exponential
(aka pointwise non-
linearity)

« Level-2 kernel »

…
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Thank you !

Nicolas Keriven

• Keriven, Bourrier, Gribonval, Pérez. Sketching for Large-Scale Learning of Mixture 
Models Information & Inference: a Journal of the IMA, 2017. <arXiv:1606.02838>

• Keriven, Tremblay, Traonmilin, Gribonval. Compressive k-means ICASSP, 2017.

• Gribonval, Blanchard, Keriven, Traonmilin. Compressive Statistical Learning with 
Random Feature Moments. Preprint 2017. <arXiv:1706.07180>

• Keriven. Sketching for Large-Scale Learning of Mixture Models. PhD Thesis.                
<tel-01620815>

• Code: sketchml.gforge.inria.fr


