Sketching for Large-Scale Learning of Mixture Models

Nicolas Keriven

Ecole Normale Supérieure (Paris)

CFM-ENS chair in Data Science, « Laplace » post-doc

(thesis with Rémi Gribonval at Inria Rennes)

Dec. 8th 2017

Large elements **Billions of elements**

Learning

Task

- Classification

Clustering

- etc...

Large elements **Billions of elements**

Learning

Slow, costly

- Clustering

- Classification

- etc...

Large elements **Billions of elements**

Learning

Slow, costly

Task

Classification

Clustering

= cat

Distributed database

- etc...

Learning

Slow, costly

Task

- Classification

Clustering

- etc...

Distributed database

Data **Stream**

...

Learning

Slow, costly

Task

Classification

Clustering

etc...

Distributed database

Small intermediate representation

Large elements **Billions of elements**

Learning

Slow, costly

Task

- Classification

etc...

Clustering

= cat

Distributed database

1: Compression

Idea!

Small intermediate representation

Data Stream

Large elements **Billions of elements**

Learning

Slow, costly

- Classification

etc...

Distributed database

1: Compression

2: Learning

Idea!

Small intermediate representation

Data Stream

Large database

Large elements **Billions of elements**

Learning

Slow, costly

Task

- Classification

= cat

Distributed database

- etc...

2: Learning

Idea!

1: Compression

Small intermediate representation

Data Stream

Desired properties

- **Fast** to compute (distributed, streaming, **GPU**...)
- Preserve desired information
- Preserve data privacy

Compression?

Data = Collection of vectors

Dimensionality reduction

See eg [Calderbank 2009, Boutsidis 2010]

- Random Projection
- Feature selection

Data = Collection of vectors

Dimensionality reduction

See eg [Calderbank 2009, Boutsidis 2010]

- Random Projection
- Feature selection

- Uniform sampling (naive)
- Adaptive sampling...

Data = Collection of vectors

Dimensionality reduction

See eg [Calderbank 2009, Boutsidis 2010]

- Random Projection
- Feature selection

- Uniform sampling (naive)
- Adaptive sampling...

- Hash tables, histograms
 - Sketching for learning?

Observation: necessarily...

Any *linear* sketch = empirical moments

$$|\hat{\mathbf{z}} = \hat{\mathbb{E}}\Phi(X)| = \frac{1}{n} \sum_{i} \Phi(x_i)$$

$$\Phi: \mathbb{R}^d \to \mathbb{C}^m$$

Observation: necessarily...

Any *linear* sketch = empirical moments

$$|\hat{\mathbf{z}} = \hat{\mathbb{E}}\Phi(X)| = \frac{1}{n} \sum_{i} \Phi(x_i)$$

$$\Phi: \mathbb{R}^d \to \mathbb{C}^m$$

Observation: necessarily...

Any *linear* sketch = **empirical moments**

$$\hat{\mathbf{z}} = \hat{\mathbb{E}}\Phi(X) = \frac{1}{n} \sum_{i} \Phi(x_i)$$

$$\Phi: \mathbb{R}^d \to \mathbb{C}^m$$

True moments (param.heta)

Good empirical properties of the « sketching » function Φ [Bourrier 2013]

- « Sufficient » dimension $\, m \,$ (size of the sketch)
- Randomly designed (convenient, only mild training)

Outline

1

Illustration: Sketched Mixture Model Estimation

2

A Compressive Sensing analysis

3

Conclusion, outlooks

Algorithm

Algorithm for mixture models: Compressive Learning OMPR (CL-OMPR)

Continuous (off-the-grid) adaptation of Orthogonal Matching Pursuit with Replacement

[Jain 2011]

Algorithm

Algorithm for mixture models: Compressive Learning OMPR (CL-OMPR)

Continuous (off-the-grid) adaptation of Orthogonal Matching Pursuit with Replacement

[Jain 2011]

With Φ = (random) fourier sampling, applicable to any mixture model with an analytic expression for the characteristic function

Application: **speaker verification** [Reynolds 2000] (d=12, k=64)

• EM on 300 000 vectors : 29.53

• 20kB sketch computed on 50GB database: 28.96

Compressive k-means [Keriven et al 2017]

Compressive k-means [Keriven et al 2017]

1 rep.

5 rep.

1 rep.

5 rep.

Mixtures of alpha-stable distribution

Mixtures of alpha-stable distribution

Application: audio source

separation [submitted]

Model: hybrid between rank-1 alpha-stable and Gaussian noise...

	SDR (dB)	SIR (dB)	MER (dB)
Oracle	8.33 ± 3.16	18.3 ± 4.13	N/A
Gaussian (EM)	3.50 ± 2.87	9.04 ± 4.92	12.3 ± 11.0
$\text{CF-}\alpha$	$\textbf{4.11} \pm \textbf{2.59}$	9.17 ± 3.51	$\textbf{12.65} \pm 9.73$

Relative sketch size m/(kd)

GMM 30 25 25 20 20 ¥ 15 10 10 10⁰ 10⁻¹ 10¹ 10⁻¹ 10¹ m/(kd) m/(kd)

Relative sketch size m/(kd)

Relative sketch size m/(kd)

Stable distributions

Relative sketch size m/(kd)

Sufficient sketch size?

$$m \approx \mathcal{O}(kd)$$

Outline

Illustration: Sketched Mixture Model Estimation

2

A Compressive Sensing analysis

Conclusion, outlooks

Linear inverse problem

PSL★

Reformulation of the sketching

Reformulation of the sketching

- Linear operator:

$$\mathcal{A}\pi = \mathbb{E}_{X \sim \pi} \Phi(X)$$

Estimation problem = **linear inverse** problem on measures

True distribution:

$$[x_1,...,x_n \overset{i.i.d.}{\sim} \pi^{\star}]$$

Reformulation of the sketching

Linear operator:

$$\mathcal{A}\pi = \mathbb{E}_{X \sim \pi} \Phi(X)$$

« Noisy » linear measurement:

$$\hat{\mathbf{z}} = \mathcal{A}\pi^* + \hat{\mathbf{e}}$$

Noise $\hat{\mathbf{e}} = \hat{\mathbb{E}}\Phi(X) - \mathbb{E}_{\pi^\star}\Phi(X)$ small

- Estimation problem = linear inverse problem on measures
- Extremely ill-posed!

True distribution:

$$\left[x_1,...,x_n \stackrel{i.i.d.}{\sim} \pi^{\star}\right]$$

Reformulation of the sketching

- Linear operator:

$$\mathcal{A}\pi = \mathbb{E}_{X \sim \pi} \Phi(X)$$

« Noisy » linear measurement:

$$\hat{\mathbf{z}} = \mathcal{A}\pi^* + \hat{\mathbf{e}}$$

Noise $\hat{\mathbf{e}} = \hat{\mathbb{E}}\Phi(X) - \mathbb{E}_{\pi^\star}\Phi(X)$ small

- Estimation problem = linear inverse problem on measures
- Extremely ill-posed!
- Feasibility? (information-preservation)

True distribution:

$$\left[x_1,...,x_n \stackrel{i.i.d.}{\sim} \pi^{\star}\right]$$

Reformulation of the sketching

- Linear operator:

$$\mathcal{A}\pi = \mathbb{E}_{X \sim \pi} \Phi(X)$$

« Noisy » linear measurement:

$$\hat{\mathbf{z}} = \mathcal{A}\pi^* + \hat{\mathbf{e}}$$

Noise $\hat{\mathbf{e}} = \hat{\mathbb{E}}\Phi(X) - \mathbb{E}_{\pi^\star}\Phi(X)$ small

S: Model set of « simple » distributions (eg. GMMs)

PSL★

S: Model set of « simple » distributions (eg. GMMs)

 $\mathfrak S$: Model set of « simple » distributions (eg. GMMs)

S: Model set of « simple » distributions (eq. GMMs)

Goal

Prove the existence of a decoder Δ robust to noise and stable to modeling error.

« Instance-optimal » decoder

Goal

Prove the existence of a decoder Δ robust to noise and stable to modeling error.

« Instance-optimal » decoder

Lower Restricted Isometry Property

$$\|\sigma - \sigma'\| \lesssim \|\mathcal{A}\sigma - \mathcal{A}\sigma'\|_2$$

 \mathbb{C}^m

Goal

Prove the existence of a decoder Δ robust to noise and stable to modeling error.

« Instance-optimal » decoder

Lower Restricted Isometry Property

$$\|\sigma - \sigma'\| \lesssim \|\mathcal{A}\sigma - \mathcal{A}\sigma'\|_2$$

Goal

Prove the existence of a *decoder* \triangle robust to noise and stable to modeling error.

Lower Restricted Isometry Property

$$\|\sigma - \sigma'\| \lesssim \|\mathcal{A}\sigma - \mathcal{A}\sigma'\|_2$$

« Instance-optimal » decoder

New goal: find/construct models $\mathfrak S$ and operators $\mathcal A$ that satisfy the LRIP (w.h.p.)

Goal: LRIP w.h.p. on \mathcal{A} , $\forall \sigma, \sigma' \in \mathfrak{S}$, $\|\sigma - \sigma'\| \lesssim \|\mathcal{A}\sigma - \mathcal{A}\sigma'\|_2$.

Goal: LRIP w.h.p. on \mathcal{A} , $\forall \sigma, \sigma' \in \mathfrak{S}$, $\|\sigma - \sigma'\| \lesssim \|\mathcal{A}\sigma - \mathcal{A}\sigma'\|_2$.

Construction of ${\cal A}:$

Kernel mean [Gretton 2006, Borgwardt 2006] Random features [Rahimi 2007]

Goal: LRIP w.h.p. on \mathcal{A} , $\forall \sigma, \sigma' \in \mathfrak{S}$, $\|\sigma - \sigma'\| \lesssim \|\mathcal{A}\sigma - \mathcal{A}\sigma'\|_2$.

Construction of ${\cal A}:$

Kernel mean [Gretton 2006, Borgwardt 2006] Random features [Rahimi 2007] $\forall \sigma, \sigma', \text{ w.h.p. on } \mathcal{A}, \text{ LRIP.}$

Goal: LRIP w.h.p. on \mathcal{A} , $\forall \sigma, \sigma' \in \mathfrak{S}$, $\|\sigma - \sigma'\| \lesssim \|\mathcal{A}\sigma - \mathcal{A}\sigma'\|_2$.

1 Pointwise LRIP

Construction of $\mathcal{A}:$

Kernel mean [Gretton 2006, Borgwardt 2006] Random features [Rahimi 2007] $\forall \sigma, \sigma', \text{ w.h.p. on } \mathcal{A}, \text{ LRIP.}$

2 Extension to LRIP

Covering numbers (compacity) of the normalized secant set $\mathcal{S}(\mathfrak{S})$

Goal: LRIP w.h.p. on \mathcal{A} , $\forall \sigma, \sigma' \in \mathfrak{S}$, $\|\sigma - \sigma'\| \lesssim \|\mathcal{A}\sigma - \mathcal{A}\sigma'\|_2$.

1 Pointwise LRIP

Construction of $\mathcal{A}:$

Kernel mean [Gretton 2006, Borgwardt 2006] Random features [Rahimi 2007] $\forall \sigma, \sigma', \text{ w.h.p. on } \mathcal{A}, \text{ LRIP.}$

2 Extension to LRIP

Covering numbers (compacity) of the normalized secant set $\mathcal{S}(\mathfrak{S})$

Subset of a unit ball (infinite dimension) that only depends on $\mathfrak S$

Goal: LRIP w.h.p. on $\mathcal{A}, \forall \sigma, \sigma' \in \mathfrak{S}, \|\sigma - \sigma'\| \lesssim \|\mathcal{A}\sigma - \mathcal{A}\sigma'\|_2$.

Pointwise LRIP

Construction of $\mathcal{A}:$

Kernel mean [Gretton 2006, Borgwardt 2006] Random features [Rahimi 2007]

 $\forall \sigma, \sigma', \text{ w.h.p. on } \mathcal{A}, \text{ LRIP.}$

Extension to LRIP

Covering numbers (compacity) of the normalized secant set $\mathcal{S}(\mathfrak{S})$

Subset of a unit ball (infinite dimension) that only depends on $\,\mathfrak{S}\,$

w.h.p. on \mathcal{A} , $\forall \sigma, \sigma'$, LRIP.

Main hypothesis

The normalized secant set $\mathcal{S}(\mathfrak{S})$ has finite covering numbers.

Main hypothesis

The normalized secant set $S(\mathfrak{S})$ has finite covering numbers.

Result

For
$$m \geq C \times \log(\text{cov. num.})$$
,

Main hypothesis

The normalized secant set $\mathcal{S}(\mathfrak{S})$ has finite covering numbers.

Result

For $m \ge C \times \log(\text{cov. num.})$,

Pointwise concentration

Dimensionality of the model

Main hypothesis

The normalized secant set $S(\mathfrak{S})$ has finite covering numbers.

Result

For
$$m \ge C \times \log(\text{cov. num.})$$
,

Pointwise concentration

Dimensionality of the model

W.h.p.

$$\|\pi^{\star} - \Delta(\hat{\mathbf{z}})\| \le d(\pi^{\star}, \mathfrak{S}) + \mathcal{O}(1/\sqrt{n})$$

Main hypothesis

The normalized secant set $S(\mathfrak{S})$ has finite covering numbers.

Main hypothesis

The normalized secant set $S(\mathfrak{S})$ has finite covering numbers.

- Classic Compressive Sensing: finite dimension: Known
- Here: infinite dimension: Technical

[Gribonval, Blanchard, Keriven, Traonmilin 2017]

k-means/k-medians with mixtures of Diracs

[Gribonval, Blanchard, Keriven, Traonmilin 2017]

k-means/k-medians with mixtures of Diracs

Hypotheses

- ε separated centroids
- M- bounded domain for centroids

[Gribonval, Blanchard, Keriven, Traonmilin 2017]

k-means/k-medians with mixtures of Diracs

Hypotheses

(no assumption on the **data**)

- arepsilon separated centroids
- M- bounded domain for centroids

[Gribonval, Blanchard, Keriven, Traonmilin 2017]

k-means/k-medians with mixtures of Diracs

Hypotheses

(no assumption on the **data**)

- ε separated centroids
- M- bounded domain for centroids

Sketch

Weighted Fourier sampling (for technical reasons)

[Gribonval, Blanchard, Keriven, Traonmilin 2017]

k-means/k-medians with mixtures of Diracs

Hypotheses

(no assumption on the **data**)

- ε separated centroids
- M- bounded domain for centroids

Sketch

Weighted Fourier sampling (for technical reasons)

Result

W.r.t. k-means usual cost (SSE)

[Gribonval, Blanchard, Keriven, Traonmilin 2017]

k-means/k-medians with mixtures of Diracs

Hypotheses

(no assumption on the **data**)

- ε separated centroids
- M- bounded domain for centroids

Sketch

Weighted Fourier sampling (for technical reasons)

Result

W.r.t. k-means usual cost (SSE)

Sketch size

 $m \geq \mathcal{O}\left(k^2d \cdot \mathtt{polylog}(k,d)\log(M/arepsilon)
ight)$

[Gribonval, Blanchard, Keriven, Traonmilin 2017]

k-means/k-medians with mixtures of Diracs

Hypotheses

(no assumption on the **data**)

- ε separated centroids
- *M* bounded domain for centroids

Sketch

Weighted Fourier sampling (for technical reasons)

Result

- W.r.t. k-means usual cost (SSE)

Sketch size

 $m \geq \mathcal{O}\left(k^2d \cdot \mathtt{polylog}(k,d)\log(M/arepsilon)
ight)$

GMM with known covariance

[Gribonval, Blanchard, Keriven, Traonmilin 2017]

k-means/k-medians with mixtures of Diracs

Hypotheses

(no assumption on the **data**)

- ε separated centroids
- *M* bounded domain for centroids

Sketch

Weighted Fourier sampling (for technical reasons)

Result

W.r.t. k-means usual cost (SSE)

Sketch size

 $m \geq \mathcal{O}\left(k^2d \cdot \mathtt{polylog}(k,d)\log(M/arepsilon)
ight)$

GMM with known covariance

Hypotheses

- Sufficiently separated means
- Bounded domain for means

[Gribonval, Blanchard, Keriven, Traonmilin 2017]

k-means/k-medians with mixtures of Diracs

Hypotheses

(no assumption on the **data**)

- ε separated centroids
- *M* bounded domain for centroids

Sketch

Weighted Fourier sampling (for technical reasons)

Result

W.r.t. k-means usual cost (SSE)

Sketch size

 $m \geq \mathcal{O}\left(k^2d \cdot \mathtt{polylog}(k,d)\log(M/arepsilon)
ight)$

GMM with known covariance

Hypotheses

- Sufficiently separated means
- Bounded domain for means

Sketch

Fourier sampling

[Gribonval, Blanchard, Keriven, Traonmilin 2017]

k-means/k-medians with mixtures of Diracs

Hypotheses

(no assumption on the **data**)

- ε separated centroids
- *M* bounded domain for centroids

Sketch

Weighted Fourier sampling (for technical reasons)

Result

W.r.t. k-means usual cost (SSE)

Sketch size

 $m \geq \mathcal{O}\left(k^2d \cdot \mathtt{polylog}(k,d)\log(M/arepsilon)
ight)$

GMM with known covariance

Hypotheses

- Sufficiently separated means
- Bounded domain for means

Sketch

Fourier sampling

Result

With respect to log-likelihood

[Gribonval, Blanchard, Keriven, Traonmilin 2017]

k-means/k-medians with mixtures of Diracs

Hypotheses

(no assumption on the **data**)

- ε separated centroids
- *M* bounded domain for centroids

Sketch

Weighted Fourier sampling (for technical reasons)

Result

W.r.t. k-means usual cost (SSE)

Sketch size

 $\left| m \geq \mathcal{O}\left(k^2d \cdot \mathtt{polylog}(k,d) \log(M/arepsilon)
ight)
ight|$

GMM with known covariance

Hypotheses

- Sufficiently separated means
- Bounded domain for means

Sketch

Fourier sampling

Result

With respect to log-likelihood

Sketch size

 $m \ge \mathcal{O}(k^2d \cdot \text{polylog}(k, d)\varphi(\text{sep.}))$

[Gribonval, Blanchard, Keriven, Traonmilin 2017]

k-means/k-medians with mixtures of Diracs

Hypotheses

(no assumption on the **data**)

- ε separated centroids
- *M* bounded domain for centroids

Sketch

Weighted Fourier sampling (for technical reasons)

Result

W.r.t. k-means usual cost (SSE)

Sketch size

 $\left| m \geq \mathcal{O}\left(k^2d \cdot \mathtt{polylog}(k,d)\log(M/arepsilon)
ight)
ight|$

GMM with known covariance

Hypotheses

- Sufficiently separated means
- Bounded domain for means

Sketch

Fourier sampling

Result

With respect to log-likelihood

Sketch size

 $m \geq \mathcal{O}(k^2d \cdot \text{polylog}(k, d)\varphi(\text{sep.}))$

$$\varphi(\sqrt{d\log k}) = 1$$
 $\varphi(\sqrt{\log k}) = e^d$

Outline

Illustration: Sketched Mixture Model Estimation

2

A Compressive Sensing analysis

Conclusion, outlooks

Sketch learning

- Sketching method for large-scale density estimation
 - Well-adapted to distributed or streaming context
 - Focus on mixture model estimation

Summary of contributions

- Practical illustration: flexible heuristic algorithm for sketched mixture model estimation
 - GMM with diagonal covariance
 - k-means (mixture of Diracs)
 - Mixture of multivariate elliptic stable distributions

Summary of contributions

- Practical illustration: flexible heuristic algorithm for sketched mixture model estimation
 - GMM with diagonal covariance
 - k-means (mixture of Diracs)
 - Mixture of multivariate elliptic stable distributions
- Information-preservation guarantees
 - Infinite dimensional Compressive Sensing (Restricted isometry property)
 - Kernel methods on distributions (Kernel mean, Random features)
- Generic assumptions of low-dimensionality of the model set

Summary of contributions

- Practical illustration: flexible heuristic algorithm for sketched mixture model estimation
 - GMM with diagonal covariance
 - k-means (mixture of Diracs)
 - Mixture of multivariate elliptic stable distributions
- Information-preservation guarantees
 - Infinite dimensional Compressive Sensing (Restricted isometry property)
 - Kernel methods on distributions (Kernel mean, Random features)
- Generic assumptions of low-dimensionality of the model set
- Outlooks
 - Convex relaxation (super-resolution)
 - Reduction of the dimension d
 - Hierarchical sketch (neural networks...)

Thank you!

- Keriven, Bourrier, Gribonval, Pérez. Sketching for Large-Scale Learning of Mixture
 Models Information & Inference: a Journal of the IMA, 2017. <arXiv:1606.02838>
- Keriven, Tremblay, Traonmilin, Gribonval. Compressive k-means ICASSP, 2017.
- Gribonval, Blanchard, Keriven, Traonmilin. Compressive Statistical Learning with Random Feature Moments. Preprint 2017. <arXiv:1706.07180>
- Keriven. Sketching for Large-Scale Learning of Mixture Models. PhD Thesis.
 <tel-01620815>
- Code: sketchml.gforge.inria.fr

