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Data Stream

……

- Clustering

- Classification

- etc…
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Task

= cat

Small intermediate
representation

Distributed database

Large database

Idea!       

Desired properties
- Fast to compute (distributed, streaming, GPU…)
- Preserve desired information
- Preserve data privacy

Slow, costly

Learning

1: Compression

2: Learning

Large elements
Billions of elements
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Linear sketch
See [Thaper 2002]
[Cormode 2011]

- Hash tables, histograms
- Sketching for learning ?

Subsampling
coresets
See eg
[Feldman 2010]

- Uniform sampling (naive)
- Adaptive sampling…
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Data = Collection of vectors

Feature
extraction

.   .   .

.   .   .

Dimensionality reduction
See eg [Calderbank 2009, 

Boutsidis 2010]

- Random Projection
- Feature selection

Compression ?

.  .  . Distributed,
streaming

Database
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Sketch learning ?
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Observation: necessarily…

Any linear sketch = empirical moments

… hence:

Sketch learning = moment matching

True moments (param.    )

Good empirical properties of the « sketching » function [Bourrier 2013]

- « Sufficient » dimension         (size of the sketch)

- Randomly designed (convenient, only mild training)

3/15

Moment matching

Sketching Learning

Compute empirical
moments



Outline

Nicolas Keriven

Illustration: Sketched Mixture Model Estimation
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Algorithm for mixture models: Compressive Learning OMPR (CL-OMPR)
Continuous (off-the-grid) adaptation of Orthogonal Matching Pursuit with Replacement

[Jain 2011]
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Moment matching

Sketching Learning

Compute empirical
moments

With = (random) fourier sampling, applicable to any mixture 
model with an analytic expression for the characteristic function
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Gaussian mixture models
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d = 10, k = 20, m = 2000

Size of database

Error

Application: speaker verification [Reynolds 2000] (d=12, k=64)

• EM on 300 000 vectors : 29.53

• 20kB sketch computed on 50GB database: 28.96

Faster than EM
(VLFeat’s gmm)
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Mixture of Diracs

Compressive k-means [Keriven et al 2017]

Nicolas Keriven

Application: Spectral clustering
for MNIST classification [Uw 2001]

(d=10, k=10, m=1000)

Classif. Perf.
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Mixture of stable dist.

Mixtures of alpha-stable distribution

Nicolas Keriven

Application: audio source 

separation [submitted]

Model: hybrid between
rank-1 alpha-stable and 
Gaussian noise…
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k-means GMM

Sufficient sketch size?

Stable distributions

Relative sketch size m/(kd)
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- Linear operator:

- « Noisy » linear measurement:

Noise                                                         small

True distribution:

Linear inverse problem

Nicolas Keriven

Reformulation of the sketching

• Estimation problem = linear inverse 
problem on measures

• Extremely ill-posed !

• Feasibility? (information-preservation)

Moment matching

Solve
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: Model set of « simple » 
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Information preservation guarantees
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New goal: find/construct models and operators that satisfy the LRIP (w.h.p.)

Moment matching

Goal
Prove the existence of a decoder robust
to noise and stable to modeling error. 

Lower Restricted Isometry Property
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Result

For                                                                            ,

W.h.p.

Main result [Keriven 2016]

Nicolas Keriven

Main hypothesis

The normalized secant set    has finite covering numbers.

Pointwise concentration Dimensionality of the model

Modeling error

- Classic Compressive Sensing: finite dimension: Known
- Here: infinite dimension: Technical

Empirical noise
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Sketch learning

Nicolas Keriven

• Sketching method for large-scale density estimation
• Well-adapted to distributed or streaming context
• Focus on mixture model estimation
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• Outlooks
• Convex relaxation (super-resolution)
• Reduction of the dimension 
• Hierarchical sketch (neural networks…)
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