Sketched Learning from Random Features Moments

Nicolas Keriven

Ecole Normale Supérieure (Paris) CFM-ENS chair in Data Science

(thesis with Rémi Gribonval at Inria Rennes)

Imaging in Paris, Apr. 5th 2018

Learning Slow, costly Clustering Eastibuted database Image: State of the state o

Large database

Distributed database

Data Stream

- etc...

Nicolas Keriven

Nicolas Keriven

Database

Data = Collection of vectors

Database

Data = Collection of vectors

Dimensionality reduction

See eg [Calderbank 2009, Boutsidis 2010]

- Random Projection
- Feature selection

Compression ?

What is a sketch ?

Any *linear* sketch = empirical moments

$$\hat{\mathbf{z}} = \hat{\mathbb{E}}\Phi(X) = \frac{1}{n} \sum_{i} \Phi(x_i)$$

What is a sketch ?

Any *linear* sketch = empirical moments

$$\hat{\mathbf{z}} = \hat{\mathbb{E}}\Phi(X) = \frac{1}{n} \sum_{i} \Phi(x_i)$$

What is a sketch ?

Any *linear* sketch = empirical moments

$$\hat{\mathbf{z}} = \hat{\mathbb{E}}\Phi(X) = \frac{1}{n} \sum_{i} \Phi(x_i)$$

What is contained in a sketch ?

• $\Phi(x) = x$: mean

What is a sketch ?

Any *linear* sketch = empirical moments

$$\hat{\mathbf{z}} = \hat{\mathbb{E}}\Phi(X) = \frac{1}{n}\sum_{i}\Phi(x_i)$$

- $\Phi(x) = x$: mean
- $\bullet \quad \Phi(x) = x^k: \, k^{\rm th} \text{ moment}$

What is a sketch ?

Any *linear* sketch = empirical moments

$$\hat{\mathbf{z}} = \hat{\mathbb{E}}\Phi(X) = \frac{1}{n} \sum_{i} \Phi(x_i)$$

- $\Phi(x) = x$: mean
- $\bullet \quad \Phi(x) = x^k: \, k^{\rm th} \text{ moment}$
- $\Phi(x) = [1_{x \in B_i}]_{i=1}^m$: histogram

What is a sketch ?

Any *linear* sketch = empirical moments

$$\hat{\mathbf{z}} = \hat{\mathbb{E}}\Phi(X) = \frac{1}{n} \sum_{i} \Phi(x_i)$$

- $\Phi(x) = x$: mean
- $\Phi(x) = x^k : k^{\text{th}}$ moment
- $\Phi(x) = [1_{x \in B_i}]_{i=1}^m$: histogram
- Proposed: kernel random features [Rahimi 2007] (random proj. + non-linearity)

What is a sketch ?

Any *linear* sketch = empirical moments

$$\hat{\mathbf{z}} = \hat{\mathbb{E}}\Phi(X) = \frac{1}{n} \sum_{i} \Phi(x_i)$$

What is contained in a sketch ?

- $\Phi(x) = x$: mean
- $\bullet \quad \Phi(x) = x^k: \, k^{\rm th} \text{ moment}$
- $\Phi(x) = [1_{x \in B_i}]_{i=1}^m$: histogram
- Proposed: kernel random features [Rahimi 2007] (random proj. + non-linearity)

Questions:

- What information is preserved by the sketching ?
 - How to retrieve this information ?
- What is a sufficient number of features ?

•

What is a sketch ?

Any *linear* sketch = empirical moments

$$\hat{\mathbf{z}} = \hat{\mathbb{E}}\Phi(X) = \frac{1}{n} \sum_{i} \Phi(x_i)$$

What is contained in a sketch ?

- $\Phi(x) = x$: mean
- $\Phi(x) = x^k : k^{\text{th}}$ moment
- $\Phi(x) = [1_{x \in B_i}]_{i=1}^m$: histogram
- Proposed: kernel random features [Rahimi 2007] (random proj. + non-linearity)

Questions:

- What information is preserved by the sketching ?
 - How to retrieve this information ?
- What is a sufficient number of features ?

Intuition: sketching as a linear embedding

•

What is a sketch ?

Any *linear* sketch = empirical moments

$$\hat{\mathbf{z}} = \hat{\mathbb{E}}\Phi(X) = \frac{1}{n} \sum_{i} \Phi(x_i)$$

What is contained in a sketch ?

- $\Phi(x) = x$: mean
- $\Phi(x) = x^k : k^{\text{th}}$ moment
- $\Phi(x) = [1_{x \in B_i}]_{i=1}^m$: histogram
- Proposed: kernel random features [Rahimi 2007] (random proj. + non-linearity)

Questions:

- What information is preserved by the sketching ?
- How to retrieve this information ?
- What is a sufficient number of features ?

Intuition: sketching as a linear embedding

- Assumption:

$$x_1, \dots, x_n \stackrel{i.i.d.}{\sim} \pi^*$$

What is a sketch ?

Any *linear* sketch = empirical moments

$$\hat{\mathbf{z}} = \hat{\mathbb{E}}\Phi(X) = \frac{1}{n} \sum_{i} \Phi(x_i)$$

What is contained in a sketch ?

- $\Phi(x) = x$: mean
- $\Phi(x) = x^k : k^{\text{th}}$ moment
- $\Phi(x) = [1_{x \in B_i}]_{i=1}^m$: histogram
- Proposed: kernel random features [Rahimi 2007] (random proj. + non-linearity)

Questions:

- What information is preserved by the sketching ?
- How to retrieve this information ?
- What is a sufficient number of features ?

Intuition: sketching as a linear embedding

- Assumption:

$$x_1, \dots, x_n \stackrel{i.i.d.}{\sim} \pi^*$$

Linear operator:

$$\mathcal{A}\pi = \mathbb{E}_{X \sim \pi} \Phi(X)$$

What is a sketch ?

Any *linear* sketch = empirical moments

$$\left| \hat{\mathbf{z}} = \hat{\mathbb{E}} \Phi(X) \right| = \frac{1}{n} \sum_{i} \Phi(x_i)$$

What is contained in a sketch ?

- $\Phi(x) = x$: mean
- $\Phi(x) = x^k : k^{\text{th}}$ moment
- $\Phi(x) = [1_{x \in B_i}]_{i=1}^m$: histogram
- Proposed: kernel random features [Rahimi 2007] (random proj. + non-linearity)

Questions:

- What information is preserved by the sketching ?
- How to retrieve this information ?
- What is a sufficient number of features ?

Intuition: sketching as a linear embedding

- Assumption: x_1, \ldots

$$x_1, ..., x_n \stackrel{i.i.d.}{\sim} \pi^*$$

- Linear operator: $\mathcal{A}\pi = \mathbb{E}_{X\sim\pi} \Phi(X)$
- « Noisy » linear measurement:

$$\hat{\mathbf{z}} = \mathcal{A}\pi^{\star} + \hat{\mathbf{e}}$$

Noise
$$\hat{\mathbf{e}} = \hat{\mathbb{E}} \Phi(X) - \mathbb{E}_{\pi^{\star}} \Phi(X)$$
 small

What is a sketch ?

Any *linear* sketch = empirical moments

$$\left| \hat{\mathbf{z}} = \hat{\mathbb{E}} \Phi(X) \right| = \frac{1}{n} \sum_{i} \Phi(x_i)$$

What is contained in a sketch ?

- $\Phi(x) = x$: mean
- $\Phi(x) = x^k : k^{\text{th}}$ moment
- $\Phi(x) = [1_{x \in B_i}]_{i=1}^m$: histogram
- Proposed: kernel random features [Rahimi 2007] (random proj. + non-linearity)

Questions:

- What information is preserved by the sketching ?
- How to retrieve this information ?
- What is a sufficient number of features ?

Intuition: sketching as a linear embedding

- Assumption: $x_1, ..., x_n$

$$x_1, ..., x_n \overset{i.i.d.}{\sim} \pi^*$$

- Linear operator: $\mathcal{A}\pi = \mathbb{E}_{X\sim\pi} \Phi(X)$

« Noisy » linear measurement:

$$\hat{\mathbf{z}} = \mathcal{A}\pi^{\star} + \hat{\mathbf{e}}$$

Noise
$$\hat{\mathbf{e}} = \hat{\mathbb{E}} \Phi(X) - \mathbb{E}_{\pi^{\star}} \Phi(X)$$
 small

Dimensionality-reducing, random, linear embedding: Compressive Sensing?

Sketched learning in this talk

5/21

 π^{\star}

 $\mathbf{z} = \mathcal{A}\pi^{\star} + \mathbf{e}$

-4

 $\pi_{\rm mix}$.

Result: Compressive k-means [Keriven et al 2017]

Mixture of Diracs = k-means

Result: Compressive k-means [Keriven et al 2017]

Gaussian mixture models

Gaussian mixture models

Gaussian mixture models

Gaussian mixture models

Application: speaker verification [Reynolds 2000] (d=12, k=64)

- EM on 300 000 vectors : 29.53
- 20kB sketch computed on 50GB database: 28.96

Nicolas Keriven

Q: Theoretical guarantees ?

- Inspired by Compressive Sensing:
 - 1: with the Restricted Isometry Property (RIP)
 - 2: with dual certificates

Outline

Information-preservation guarantees: a RIP analysis

Total variation regularization: a dual certificate analysis

Outline

Information-preservation guarantees: a RIP analysis Joint work with R. Gribonval, G. Blanchard, Y. Traonmilin

Total variation regularization: a dual certificate analysis

- Estimation problem = linear inverse problem on measures
- Extremely ill-posed !

- Estimation problem = linear inverse problem on measures
- Extremely ill-posed !
- *Feasibility?* (information-preservation)

 \mathfrak{S} : Model set of « simple » distributions (eg. GMMs)

 \mathfrak{S} : Model set of « simple » distributions (eg. GMMs)

 \mathfrak{S} : Model set of « simple » distributions (eg. GMMs)

Goal

Prove the existence of a *decoder* Δ robust to noise and stable to modeling error.

« Instance-optimal » decoder

« Instance-optimal » decoder

Nicolas Keriven

« Instance-optimal » decoder

CFM Nicolas Keriven

New goal: find/construct models $\,\mathfrak{S}$ and operators $\,\mathcal{A}\,$ that satisfy the LRIP (w.h.p.)

Goal: LRIP w.h.p. on $\mathcal{A}, \forall \sigma, \sigma' \in \mathfrak{S}, \|\sigma - \sigma'\| \lesssim \|\mathcal{A}\sigma - \mathcal{A}\sigma'\|_2$.

 Φ : random features [Rahimi2007] to approximate $~\kappa$

Reformulation of the LRIP

Goal: LRIP
$$\|\sigma - \sigma'\|_{\kappa} \lesssim \|\mathcal{A}(\sigma - \sigma')\|_2$$

Reformulation of the LRIPGoal: LRIP $\|\sigma - \sigma'\|_{\kappa} \lesssim \|\mathcal{A}(\sigma - \sigma')\|_{2}$ $\Leftrightarrow 1 \lesssim \|\mathcal{A}(\frac{\sigma - \sigma'}{\|\sigma - \sigma'\|_{\kappa}})\|_{2}$

Reformulation of the LRIP

$$\text{Goal: LRIP} \quad \|\sigma-\sigma'\|_\kappa \lesssim \|\mathcal{A}(\sigma-\sigma')\|_2$$

$$\Leftrightarrow \left[1 \lesssim \|\mathcal{A}(\frac{\sigma - \sigma'}{\|\sigma - \sigma'\|_{\kappa}})\|_2 \right]$$

Definition: Normalized Secant set

$$\mathcal{S}_{\mathfrak{S}} = \left\{ \frac{\sigma - \sigma'}{\|\sigma - \sigma'\|_{\kappa}}; \ \sigma, \sigma' \in \mathfrak{S} \right\}$$

-	\mathcal{M}			
	$\mathcal{S}_{\mathfrak{S}}$			
	XX		Ś	
		No.	SP	

Goal: LRIP w.h.p. on $\mathcal{A}, \forall s \in \mathcal{S}_{\mathfrak{S}}, 1 \leq ||\mathcal{A}s||_2$.

Nicolas Keriven

13/21

Goal: LRIP w.h.p. on $\mathcal{A}, \forall s \in \mathcal{S}_{\mathfrak{S}}, 1 \leq ||\mathcal{A}s||_2$.

Pointwise LRIP: Concentration inequality

 $\forall s, \text{ w.h.p. on } \mathcal{A}, \text{ LRIP.}$

Goal: LRIP w.h.p. on $\mathcal{A}, \forall s \in \mathcal{S}_{\mathfrak{S}}, 1 \leq ||\mathcal{A}s||_2$.

- Classic Compressive Sensing: finite dimension: Known
- Here: infinite dimension: Technical

Application

Application

k-means with mixtures of Diracs

Hypotheses

- \mathcal{E} separated centroids
- $M\mathchar`-$ bounded domain for centroids

k-means with mixtures of Diracs (no assumption Hypotheses on the **data**) $\ensuremath{\mathcal{E}}\xspace$ - separated centroids -M- bounded domain for centroids -

k-means with mixtures of Diracs

Hypotheses

- \mathcal{E} separated centroids
- M- bounded domain for centroids

Sketch

- *Adjusted* Random Fourier features (for technical reasons)

(no assumption

on the **data**)

k-means with mixtures of Diracs

Hypotheses

- \mathcal{E} separated centroids
- M- bounded domain for centroids

Sketch

- Adjusted Random Fourier features (for technical reasons)

Result

- W.r.t. k-means usual cost (SSE)

(no assumption

on the **data**)

k-means with mixtures of Diracs

Hypotheses

- \mathcal{E} separated centroids
- M- bounded domain for centroids

Sketch

- Adjusted Random Fourier features (for technical reasons)

Result

- W.r.t. k-means usual cost (SSE)

Sketch size

$$m \geq \mathcal{O}\left(\mathbf{k^2 d} \cdot \operatorname{polylog}(k, d) \log(M/\varepsilon) \right)$$

(no assumption

on the **data**)

 Hypotheses <i>E</i> - separated centroids <i>M</i> - bounded domain for centroids Sketch Adjusted Random Fourier features (for technical reasons) Result W.r.t. k-means usual cost (SSE) 		k-means with mixtures of Diracs			
 M- bounded domain for centroids Sketch Adjusted Random Fourier features (for technical reasons) Result W.r.t. k-means usual cost (SSE) 	_	Hypotheses (no assumption on the data)			
Sketch - Adjusted Random Fourier features (for technical reasons) Result - W.r.t. k-means usual cost (SSE)	-	M- bounded domain for centroids			
 Adjusted Random Fourier features (for technical reasons) Result W.r.t. k-means usual cost (SSE) 		Sketch			
Result - W.r.t. k-means usual cost (SSE)	-	Adjusted Random Fourier features (for technical reasons)			
- W.r.t. k-means usual cost (SSE)		Result			
	-	W.r.t. k-means usual cost (SSE)			
Sketch size		Sketch size			
$m \geq \mathcal{O}\left(\frac{k^2 d}{k^2 d} \cdot \operatorname{polylog}(k, d) \log(M/\varepsilon) \right)$	m	$\geq \mathcal{O}\left(\frac{k^2d}{\cdot}\operatorname{polylog}(k,d)\log(M/\varepsilon)\right)$			

GMM with known covariance

k-means with mixtures	of Diracs	GMM with known covariance
Hypotheses - \mathcal{E} - separated centroids - M - bounded domain for c	(no assumption on the data) entroids	Hypotheses - Sufficiently separated means - Bounded domain for means
Sketch - Adjusted Random Fourier features (for technical reasons)		
Result - W.r.t. k-means usual cost	(SSE)	
Sketch size $m \geq \mathcal{O}\left(oldsymbol{k}^2 oldsymbol{d} \cdot extsf{polylog}(k, oldsymbol{d}) ight)$	$d)\log(M/arepsilon)$	

k-means with mixtures of Diracs	GMM with known covariance
 Hypotheses <i>C</i> - separated centroids <i>M</i>- bounded domain for centroids 	Hypotheses - Sufficiently separated means - Bounded domain for means
Sketch - Adjusted Random Fourier features (for technical reasons)	Sketch - Fourier features
Result - W.r.t. k-means usual cost (SSE)	
$\begin{array}{l} \textbf{Sketch size} \\ m \geq \mathcal{O}\left(\pmb{k^2d} \cdot \texttt{polylog}(k,d) \log(M/\varepsilon) \right) \end{array}$	

k-means with mixtures of Diracs	GMM with known covariance
 Hypotheses - ε - separated centroids M- bounded domain for centroids 	Hypotheses - Sufficiently separated means - Bounded domain for means
Sketch - Adjusted Random Fourier features (for technical reasons)	Sketch - Fourier features
Result - W.r.t. k-means usual cost (SSE)	Result - With respect to log-likelihood
$\begin{array}{l} \textbf{Sketch size} \\ m \geq \mathcal{O}\left(\pmb{k^2d} \cdot \texttt{polylog}(k,d) \log(M/\varepsilon) \right) \end{array}$	

k-means with mixtures of Diracs	GMM with known covariance
Hypotheses(no assumption on the data)- \mathcal{E} - separated centroidson the data)- M - bounded domain for centroids	 Hypotheses Sufficiently separated means Bounded domain for means
Sketch - Adjusted Random Fourier features (for technical reasons)	Sketch - Fourier features
Result - W.r.t. k-means usual cost (SSE)	Result - With respect to log-likelihood
$\begin{array}{l} \textbf{Sketch size} \\ m \geq \mathcal{O}\left(\pmb{k^2d} \cdot \texttt{polylog}(k,d) \log(M/\varepsilon) \right) \end{array}$	$\begin{array}{l} \textbf{Sketch size} \\ m \geq \mathcal{O}(\textbf{k}^2 d \cdot \texttt{polylog}(k, d)) \end{array}$

With the RIP analysis:

12/10/2017

Nicolas Keriven

With the RIP analysis:

- Moment matching: best decoder possible (instance optimal) ٠
 - Information-preservation guarantees •

With the RIP analysis:

- Moment matching: best decoder possible (instance optimal)
 - Information-preservation guarantees
- Fine control on modeling error, noise, and metrics
 - Can incorporate k-means cost or log-likelihood

With the RIP analysis:

- Moment matching: best decoder possible (instance optimal)
 - Information-preservation guarantees
- Fine control on modeling error, noise, and metrics
 - Can incorporate k-means cost or log-likelihood

Compressive Sensing:

With the RIP analysis:

- Moment matching: best decoder possible (instance optimal)
 - Information-preservation guarantees
- Fine control on modeling error, noise, and metrics
 - Can incorporate k-means cost or log-likelihood

Compressive Sensing:

• Random, dimensionality-reducing operator

With the RIP analysis:

- Moment matching: best decoder possible (instance optimal)
 - Information-preservation guarantees
- Fine control on modeling error, noise, and metrics
 - Can incorporate k-means cost or log-likelihood

Compressive Sensing:

• Random, dimensionality-reducing operator

Sparsity

With the RIP analysis:

- Moment matching: best decoder possible (instance optimal)
 - Information-preservation guarantees
- Fine control on modeling error, noise, and metrics
 - Can incorporate k-means cost or log-likelihood

Compressive Sensing:

- Random, dimensionality-reducing operator
- Sparsity
- The information is preserved

With the RIP analysis:

- Moment matching: best decoder possible (instance optimal)
 - Information-preservation guarantees
- Fine control on modeling error, noise, and metrics
 - Can incorporate k-means cost or log-likelihood

Compressive Sensing:

- Random, dimensionality-reducing operator
- Sparsity
- The information is preserved
- Convex relaxation? X

Outline

Information-preservation guarantees: a RIP analysis

Total variation regularization: a dual certificate analysis Joint work with **C. Poon, G. Peyré**

Previously: RIP analysis

Minimization: moment matching

$$\min_{\theta} \|\mathcal{A}(\sum w_i \pi_{\theta_i}) - \hat{\mathbf{z}}\|_2$$

Previously: RIP analysis

Minimization: moment matching

$$\min_{\theta} \|\mathcal{A}(\sum w_i \pi_{\theta_i}) - \hat{\mathbf{z}}\|_2$$

- Must know k
- Non-convex !

Previously: RIP analysis

Minimization: moment matching

$$\min_{\theta} \|\mathcal{A}(\sum w_i \pi_{\theta_i}) - \hat{\mathbf{z}}\|_2$$

- Must know k
- Non-convex !

Convex relaxation (« super resolution »)

 $\left[\min_{\mu} \frac{1}{2} \|\Psi\mu - \hat{\mathbf{z}}\|_2 + \lambda \|\mu\|_{\mathrm{TV}}\right]$

- μ : Radon measure
- $\Psi \mu = \int (\mathcal{A}\pi_{\theta}) d\mu(\theta)$
- || · ||_{TV} : Total variation (« L1 norm »)

Previously: RIP analysis

Minimization: moment matching

$$\min_{\theta} \| \mathcal{A}(\sum w_i \pi_{\theta_i}) - \hat{\mathbf{z}} \|_2$$

- Must know k
- Non-convex !

Convex relaxation (« super resolution »)

$$\min_{\mu} \frac{1}{2} \|\Psi\mu - \hat{\mathbf{z}}\|_2 + \lambda \|\mu\|_{\mathrm{TV}}$$

- μ : Radon measure
- $\Psi\mu = \int (\mathcal{A}\pi_{\theta})d\mu(\theta)$
- $\|\cdot\|_{\mathrm{TV}}$: Total variation (« L1 norm »)

Convex:

can be handled by eg Frank-Wolfe algorithm
 [Boyd 2015], or in some cases as a SDP

Previously: RIP analysis

Minimization: moment matching

$$\min_{\theta} \|\mathcal{A}(\sum w_i \pi_{\theta_i}) - \hat{\mathbf{z}}\|_2$$

- Must know k
- Non-convex !

Convex relaxation (« *super resolution* »)

$$\min_{\mu} \frac{1}{2} \|\Psi\mu - \hat{\mathbf{z}}\|_2 + \lambda \|\mu\|_{\mathrm{TV}}$$

- μ : Radon measure
- $\Psi \mu = \int (\mathcal{A}\pi_{\theta}) d\mu(\theta)$
- || · ||_{TV} : Total variation (« L1 norm »)

Convex:

 can be handled by eg Frank-Wolfe algorithm [Boyd 2015], or in some cases as a SDP

Questions:

- Is the measure $\,\mu\,$ sparse ? $\,\,\mu=\sum ilde{w}_i \delta_{ ilde{ heta}_i}\,$
- Does it have the right number of components ?
- Does it recover the true $\,w_i, heta_i$?

Intuition: first order conditions: μ_0 solution $\Leftrightarrow \frac{1}{\lambda} \Psi^*(\Psi \mu_0 - \hat{\mathbf{z}}) \in \partial \|\mu_0\|_{\mathrm{TV}}$

Intuition: first order conditions: μ_0 solution \Leftrightarrow

$$\Rightarrow \quad \frac{1}{\lambda} \Psi^{\star}(\Psi \mu_0 - \hat{\mathbf{z}}) \in \partial \|\mu_0\|_{\mathrm{TV}}$$

Def. : **Dual certificate** (= Lagrange multiplier in the noiseless case...)

$$\eta \in \operatorname{Im}(\Psi^{\star}) \cap \partial \|\mu_0\|_{\mathrm{TV}}$$

Intuition: first order conditions: μ_0 solution \Leftarrow

$$\Rightarrow \quad \frac{1}{\lambda} \Psi^{\star}(\Psi \mu_0 - \hat{\mathbf{z}}) \in \partial \|\mu_0\|_{\mathrm{TV}}$$

Def. : **Dual certificate** (= Lagrange multiplier in the noiseless case...)

$$\eta \in \operatorname{Im}(\Psi^{\star}) \cap \partial \|\mu_0\|_{\mathrm{TV}}$$

What is a dual certificate?

Intuition: first order conditions: μ_0 solution $\Leftrightarrow \frac{1}{\lambda}\Psi^*(\Psi\mu_0 - \hat{\mathbf{z}}) \in \partial \|\mu_0\|_{\mathrm{TV}}$

Def. : **Dual certificate** (= Lagrange multiplier in the noiseless case...)

$$\eta \in \mathrm{Im}(\Psi^{\star}) \cap \partial \|\mu_0\|_{\mathrm{TV}}$$

What is a dual certificate?

$$\eta(\theta) = \langle \mathbf{h}, \mathcal{A}\pi_{\theta} \rangle$$

Such that:

- $\eta(\theta_i) = 1$
- $|\eta(\theta)| < 1$ otherwise
- $\nabla^2 \eta(\theta_i) \prec 0$

Intuition: first order conditions: μ_0 solution $\Leftrightarrow \frac{1}{\lambda}\Psi^*(\Psi\mu_0 - \hat{\mathbf{z}}) \in \partial \|\mu_0\|_{\mathrm{TV}}$

Def. : **Dual certificate** (= Lagrange multiplier in the noiseless case...)

$$\eta \in \mathrm{Im}(\Psi^{\star}) \cap \partial \|\mu_0\|_{\mathrm{TV}}$$

$$\eta(\theta) = \langle \mathbf{h}, \mathcal{A}\pi_{\theta} \rangle$$

Such that:

•
$$\eta(\theta_i) = 1$$

• $|\eta(\theta)| < 1$ otherwise
• $\nabla^2 \eta(\theta_i) \prec 0$

Step 1: study full kernel

12/10/2017

18/21

Step 1: study full kernel

 $\bar{\eta} \in \operatorname{Span} \left\{ \kappa(\theta_i, \cdot), \partial_1 \kappa(\theta_i, \cdot) \right\} \subset \operatorname{Im}(\mathbb{E}\Psi^{\star})$

Step 1: study full kernel

$$\bar{\eta} \in \operatorname{Span} \left\{ \kappa(\theta_i, \cdot), \partial_1 \kappa(\theta_i, \cdot) \right\} \subset \operatorname{Im}(\mathbb{E}\Psi^{\star})$$

Assumptions:

- Kernel « well-behaved »
- θ_i sufficiently separated

Step 1: study full kernel

$$\bar{\eta} \in \operatorname{Span} \left\{ \kappa(\theta_i, \cdot), \partial_1 \kappa(\theta_i, \cdot) \right\} \subset \operatorname{Im}(\mathbb{E}\Psi^{\star})$$

Assumptions:

- Kernel « well-behaved »
- $heta_i$ sufficiently separated

Step 2: bounding the deviations

$$n = \infty$$

Step 1: study full kernel

$$\bar{\eta} \in \operatorname{Span} \left\{ \kappa(\theta_i, \cdot), \partial_1 \kappa(\theta_i, \cdot) \right\} \subset \operatorname{Im}(\mathbb{E}\Psi^{\star})$$

Assumptions:

- Kernel « well-behaved »
- $heta_i$ sufficiently separated

Step 2: bounding the deviations

• Pointwise deviation (concentration ineq.)

 $m = \infty$

• Covering numbers

Step 1: study full kernel

$$\bar{\eta} \in \operatorname{Span} \left\{ \kappa(\theta_i, \cdot), \partial_1 \kappa(\theta_i, \cdot) \right\} \subset \operatorname{Im}(\mathbb{E}\Psi^{\star})$$

Assumptions:

- Kernel « well-behaved »
- $heta_i$ sufficiently separated

Step 2: bounding the deviations

- Pointwise deviation (concentration ineq.)
- Covering numbers

Step 1: study full kernel

$$\bar{\eta} \in \operatorname{Span} \left\{ \kappa(\theta_i, \cdot), \partial_1 \kappa(\theta_i, \cdot) \right\} \subset \operatorname{Im}(\mathbb{E}\Psi^{\star})$$

Assumptions:

- Kernel « well-behaved »
- $heta_i$ sufficiently separated

Step 1: study full kernel

$$\bar{\eta} \in \operatorname{Span} \left\{ \kappa(\theta_i, \cdot), \partial_1 \kappa(\theta_i, \cdot) \right\} \subset \operatorname{Im}(\mathbb{E}\Psi^{\star})$$

Assumptions:

- Kernel « well-behaved »
- $heta_i$ sufficiently separated

Assumption: data are *actually* drawn from a GMM...

1: Ideal scaling in sparsity

19/21

Assumption: data are *actually* drawn from a GMM...

1: Ideal scaling in sparsity

```
m \geq \mathcal{O}(\textit{k}d^4 \cdot \texttt{polylog}(k,d))
```


Assumption: data are *actually* drawn from a GMM...

1: Ideal scaling in sparsity

 $m \geq \mathcal{O}(\mathbf{k}d^4 \cdot \operatorname{polylog}(k, d))$ In progress...

Assumption: data are *actually* drawn from a GMM...

1: Ideal scaling in sparsity

$$m \geq \mathcal{O}(\frac{kd^4}{\uparrow} \cdot \operatorname{polylog}(k, d))$$

- $\tilde{\mu}$ not necessarily sparse, but:
- Mass of $\,\widetilde{\mu}\,$ concentrated around true $heta_i$
- *Proof*: infinite-dimensional golfing scheme (new)

Assumption: data are *actually* drawn from a GMM...

1: Ideal scaling in sparsity

$$m \geq \mathcal{O}(\frac{kd^4}{\uparrow} \cdot \operatorname{polylog}(k, d))$$

- $\tilde{\mu}$ not necessarily sparse, but:
- Mass of $\,\widetilde{\mu}\,$ concentrated around true $heta_i$
- *Proof*: infinite-dimensional golfing scheme (new)

2: Minimal norm certificate

[Duval, Peyré 2015]

$$m \geq \mathcal{O}(\frac{k^2 d^3}{\hbar} \cdot \operatorname{polylog}(k, d))$$

Assumption: data are *actually* drawn from a GMM...

1: Ideal scaling in sparsity

$$m \geq \mathcal{O}(\frac{kd^4}{\uparrow} \cdot \operatorname{polylog}(k, d))$$

- $ilde{\mu}$ not necessarily sparse, but:
- Mass of $\, { ilde \mu} \,$ concentrated around true $heta_i$
- *Proof*: infinite-dimensional golfing scheme (new)

2: Minimal norm certificate [Duval, Peyré 2015] $m \geq \mathcal{O}(k^2 d^3 \cdot \operatorname{polylog}(k, d))$ \uparrow In progress...

• when *n* high enough: $\tilde{\mu}$ sparse, with right number of components

•
$$\tilde{\theta}_i \xrightarrow[n \to \infty]{} \theta_i$$

 Proof: adaptation of [Tang, Recht 2013] (constructive!)

Outline

Information-preservation guarantees: a RIP analysis

Total variation regularization: a dual certificate analysis

Sketch learning

- Sketching :
 - Streaming, distributed learning
 - Original view on data compression and generalized moments
 - Combines random features and kernel mean with infinite dimensional Compressive sensing

Summary, outlooks

RIP analysis

- Information preservation guarantees
- Fine control on noise, modeling error (instance optimal decoder) and recovery metrics
- Necessary and sufficient conditions
- But: Non-convex minimization

Summary, outlooks

RIP analysis

- Information preservation guarantees
- Fine control on noise, modeling error (instance optimal decoder) and recovery metrics
- Necessary and sufficient conditions
- But: Non-convex minimization

Dual certificate analysis

- Convex minimization
- Does not handle modelling error
- In some cases, automatically guess the right number of components

Summary, outlooks

RIP analysis

- Information preservation guarantees
- Fine control on noise, modeling error (instance optimal decoder) and recovery metrics
- Necessary and sufficient conditions
- But: Non-convex minimization

• Dual certificate analysis

- Convex minimization
- Does not handle modelling error
- In some cases, automatically guess the right number of components

Outlooks

- Algorithms for TV minimization
- Other features Φ (not necessarily random...)
- Other « sketched » learning tasks
- Multilayer sketches ?

Thank you !

- Keriven, Bourrier, Gribonval, Pérez. Sketching for Large-Scale Learning of Mixture Models Information & Inference: a Journal of the IMA, 2017. <arXiv:1606.02838>
- Keriven, Tremblay, Traonmilin, Gribonval. Compressive k-means ICASSP, 2017.
- Gribonval, Blanchard, Keriven, Traonmilin. Compressive Statistical Learning with Random Feature Moments. Preprint 2017. <arXiv:1706.07180>
- Keriven. Sketching for Large-Scale Learning of Mixture Models. PhD Thesis. <tel-01620815>
- Poon, Keriven, Peyré. A Dual Certificates Analysis of Compressive Off-the-Grid Recovery. Submitted
- **Code**: sketchml.gforge.inria.fr, github: nkeriven

