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Data = Collection of vectors

< n » || Subsampling , Linear sketch A

R , ||| coresets < n . || See [Thaper 2002]
d'| |71y to Ln || see eg 1 [Cormode 2011]
[Feldman 2010]
m| |z

. . o o o . .

Dimensionality reduction d| F1- - tn Dlstrlbutfed,
See eg [Calderbank 2009, streaming
Boutsidis 2010] !

- Random Projection - Uniform sampling (naive) || _ 55k tables, histograms
- Feature selection - Adaptive sampling... - Sketching for learning ?
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How-to: build a sketch

What is a sketch ?

Any linear sketch = empirical moments

2 =E0(X) = LY, &(x))

What is contained in a sketch ?
* P(x) =z :mean
« ®(z) = 2% : k*h moment
o ®(z) = [lyep,|™ : histogram
* Proposed: kernel random features

[Rahimi 2007]
(random proj. + non-linearity)
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Any linear sketch = empirical moments | | * What information is preserved by the sketching ?
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What is a sketch ? Questions:

Any linear sketch = empirical moments | | * What information is preserved by the sketching ?

7 = E(I)(X) — % Zq, (I)(QZZ) * How to retrieve this information ?

e What is a sufficient number of features ?

What is contained in a sketch ?

« ®(x) =x :mean Intuition: sketching as a linear embedding
] ion: id.d.
« ®(z) = 2% : k*h moment Assumption: Llyeeeyp ~ T

« ®(x) = [lyep,]™, : histogram - Linear operator: A1 = Ex . ®(X)

* Proposed: kernel random features -« Noisy » linear measurement:
(random proj. + non-linearity) [ 7z — ./4’7'(' + e ]

Noise € = E@(X) — E®(X) small

[ Dimensionality-reducing, random, linear embedding: Compressive Sensing? }
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Compressive Sensing: sparsity ?

Compressive Sensing: Classical compressive sensing
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Compressive Sensing: sparsity ?

Compressive Sensing: Classical compressive sensing
* Dimensionality reduction, random - O
operator 0 Random C
— matrix n
* (lll-posed) inverse problem: density B — ] — =
estimation u u
N y =Mx+e N
e Sparsity: « simple » densities m N
(mixture model) X Xk
Sketched learning in this talk
‘ Random s
features 2 >
averaged ! © @
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Tmix.
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Result: Compressive k-means [Keriven et al 2017]

Mixture of Diracs = k-means
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Result: Compressive k-means [Keriven et al 2017]

Mixture of Diracs = k-means
Application: Spectral clustering

for MINIST classification [Uw 2001]
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Gaussian mixture models

GMM
©CL-OMPR
4-EM1
EM10
' P S
&2 o g 009
@) = |
1072+ Faster than EM
(VLFeat’s gmm)
1073 ‘ ‘
10° 10* 10°

Size of database

Application: speaker verification [Reynolds 2000] (d=12, k=64)
* EM on 300 000 vectors : 29.53
e 20kB sketch computed on 50GB database: 28.96

7/21



/ Q: Theoretical guarantees ? \

* Inspired by Compressive Sensing:

e 1:with the Restricted Isometry Property (RIP)

k e 2:with dual certificates J
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Information-preservation guarantees:
a RIP analysis

@ Total variation regularization:
a dual certificate analysis

@ Conclusion, outlooks
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Information-preservation guarantees:
a RIP analysis

Joint work with R. Gribonval, G. Blanchard, Y. Traonmilin
Total variation regularization:
a dual certificate analysis

@ Conclusion, outlooks
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o ) 7.7.d. *
True distribution: |Z1,..., Ty, ~ T

Sketch: z=Ar* + e ]

e Estimation problem = linear inverse problem on measures

* Extremely ill-posed !
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Recall: Linear inverse problem

Best algorithm
possible I < ©)

v
>
N,

True distribution: | T1, .-y Ty, ™~ W*]

Sketch: z=Ar* + e ]

e Estimation problem = linear inverse problem on measures
* Extremely ill-posed !
* Feasibility? (information-preservation)
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Information preservation guarantees

S : Model set of « simple »
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distributions (eg. GMMs)

Goal

Prove the existence of a decoder /\ robust
to noise and stable to modeling error.

« Instance-optimal » decoder
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Information preservation guarantees

D S : Model set of « simple » D
distributions (eg. GMMs)

—
<

A(z) € argmingeg ||z — Ao|[2

Non-convex generalized moment matching

cm cm

=

Goal Lower Restricted Isometry Property

Prove the existence of a decoder /\ robust / /
to noise and stable to modeling error. ”U — 0 H 5 HAU — Ao H?

« Instance-optimal » decoder

New goal: find/construct models (5 and operators A that satisfy the LRIP (w.h.p.)
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Appropriate metric

Goal: IRIP w.h.p. on A, Vo,0’ € &, ||o — o’|| < || Ao — Ad’||2.

Reproducing kernel:

k(x, z') < 7 )
|

Kernel mean

k(m, ') =Er(X, X)

444444
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Appropriate metric

Goal: IRIP w.h.p. on A, Vo,0’ € &, ||o — o’|| < || Ao — Ad’||2.

Reproducing kernel:

® : random features [Rahimi2007]
k(x,x) < , > to approximate K

|

Kernel mean

k(m, ') =Er(X, X)
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Appropriate metric

Goal: IRIP w.h.p. on A, Vo,0’ € &, ||o — o’|| < || Ao — Ad’||2.

Reproducing kernel:

® : random features [Rahimi2007]

k(x,x) < , > to approximate K
l lAW = E,.®(X)
Kernel mean Basis for LRIP

k(m, ') =Er(X, X)

(. 1.) |7 — |2 ~ A — Ar’|3
- 9

% 4 o2 0 o2 4
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Proof strategy (1)

Reformulation of the LRIP
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{1 S 1G]

Definition: Normalized Secant set

{S@ — {HG‘T__GU,I“E; o,0 € G}}
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Proof strategy (1)

Reformulation of the LRIP

Goal: LRIP ||o — o'[|x S [[A(o —o’)||2

{1 S 1G]

Definition: Normalized Secant set

{S@ — {”U"__G",I“E; o,0 € G}}

New goal
With high probability on A :

forall s € S, 1 < || Aslla .
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Proof strategy (2)

Goal: lRIP  W.h.p. on A, Vs € Sg, 1 < || As|2.
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Proof strategy (2)

Goal: LRIP W.h.p. on ./4, Vs € Sg, 1 SJ HAS”Q

Pointwise LRIP:
Concentration inequality VS’\W'h'p Ol Aa LRIP.
/

@ Extension to LRIP:

covering numbers

w.h.p. on A, Vs, LRIP.
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Main result
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Main result

Main hypothesis

The normalized secant set S(S) has finite covering numbers.

Result

For [m > C' x log(cov. num.)],

[ Quality of pointwise LRIP ] [ Dimensionality of the model ]

W.h.p.

[ Modeling error ] [ Empirical noise ]

7 7
|7 = A(2)]| < d(7*,6) + O(1/v/n)

- Classic Compressive Sensing: finite dimension: Known
- Here: infinite dimension: Technical
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Application

k-means with mixtures of Diracs GMM with known covariance
Hvootheses (no assumption
P . on the data)
- £ -separated centroids

- M -bounded domain for centroids

Sketch

- Adjusted Random Fourier features (for
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- Adjusted Random Fourier features (for
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* Moment matching: best decoder possible (instance optimal)
* Information-preservation guarantees

* Fine control on modeling error, noise, and metrics

e Canincorporate k-means cost or log-likelihood
Compressive Sensing:
 Random, dimensionality-reducing operator /
* Sparsity /
* The information is preserved /
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Information-preservation guarantees:
a RIP analysis

@ Total variation regularization:
a dual certificate analysis

Joint work with C. Poon, G. Peyré

@ Conclusion, outlooks
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Total Variation regularization

Previously: RIP analysis

Minimization: moment matching e Must know k

[miﬂe HA(Z W;iTy,) — QHQ] * Non-convex !

Convex relaxation (« super resolution »)
Convex:

[mil’l“ % H \IJM —_ 2‘|2—{—)\HMHTV] * canbe handleq by eg Frank-Wolfe algorithm
[Boyd 2015], or in some cases as a SDP

[l : Radon measure

» Uy = [(Amg)dpu(0)

o ||+ |lTv :Total variation (« L1
norm ») * Does it recover the true w;, 0; ?

Questions: N
* Isthe measure [/ sparse? [ = Z wiégi

* Does it have the right number of components ?

12/10/2017 Nicolas Keriven CEM E@S PSL 16/21
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A bit of convex analysis

Intuition: first order conditions: pg solution <> +U*(Upg —2) € 9|uolTv

Def. : Dual certificate ( = Lagrange multiplier in the noiseless case...)

n € Im (%) N A|pollTv

What is a dual certificate?
?7(9) — <h7 AW@)
Such that:

. n(0i) =1
77(9)| < 1 otherwise! = = 00rrmmmmmmmmmmeeeeeeaoooo

Ensures uniqueness and robustness...

EEM £ psLx 17/21
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Results for separated GMM
| Assumption: data are actually drawn from a GMM... |

1: Ideal scaling in sparsity

. [l not necessarily sparse, but:

m > O(kd* - polylog(k,d)) .
T

In progress...

Mass of [4 concentrated around true @,

* Proof: infinite-dimensional golfing
scheme (new)

2: Minimal norm certificate : . _
[Duval, Peyré 2015] * when n high enough: {1 sparse, with

right number of components
m > O(k*d® - polylog(k,d))
f ° 91 — 92

In progress... n— 00

* Proof: adaptation of [Tang, Recht 2013]
(constructive!)
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Information-preservation guarantees:
a RIP analysis

@ Total variation regularization:
a dual certificate analysis

@ Conclusion, outlooks
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Sketch learning

e

* Sketching :

e Streaming, distributed learning
* Original view on data compression and generalized moments

 Combines random features and kernel mean with infinite
dimensional Compressive sensing
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Summary, outlooks

* RIP analysis
* Information preservation guarantees
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* But: Non-convex minimization
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Summary, outlooks

* RIP analysis
* Information preservation guarantees

* Fine control on noise, modeling error (instance optimal decoder) and
recovery metrics

* Necessary and sufficient conditions
* But: Non-convex minimization

* Dual certificate analysis
* Convex minimization
* Does not handle modelling error
* In some cases, automatically guess the right number of components

e QOutlooks

e Algorithms for TV minimization

e Other features @ (not necessarily random...)
e Other « sketched » learning tasks

* Multilayer sketches ?
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Thank you !

» Keriven, Bourrier, Gribonval, Pérez. Sketching for Large-Scale Learning of Mixture
Models Information & Inference: a Journal of the IMA, 2017. <arXiv:1606.02838>

e Keriven, Tremblay, Traonmilin, Gribonval. Compressive k-means /CASSP, 2017.

e Gribonval, Blanchard, Keriven, Traonmilin. Compressive Statistical Learning with
Random Feature Moments. Preprint 2017. <arXiv:1706.07180>

* Keriven. Sketching for Large-Scale Learning of Mixture Models. PhD Thesis.
<tel-01620815>

* Poon, Keriven, Peyré. A Dual Certificates Analysis of Compressive Off-the-Grid
Recovery. Submitted

e Code: sketchml.gforge.inria.fr,
github: nkeriven
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