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Task

= cat

Small intermediate
representation

Distributed database

Large database

Idea!       

Desired properties
- Fast to compute (distributed, streaming, GPU…)
- Preserve desired information
- Preserve data privacy

Slow, costly

Learning

1: Compression

2: Learning
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Linear sketch
See [Thaper 2002]
[Cormode 2011]

- Hash tables, histograms
- Sketching for learning ?
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Data = Collection of vectors

Feature
extraction

.   .   .

.   .   .

Dimensionality reduction
See eg [Calderbank 2009, 

Boutsidis 2010]

- Random Projection
- Feature selection

Compression ?

.  .  . Distributed,
streaming
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What is contained in a sketch ?

• : mean

• :         moment

• : histogram

• Proposed: kernel random features 
[Rahimi 2007]

(random proj. + non-linearity)

Questions:

• What information is preserved by the sketching ? 

• How to retrieve this information ?

• What is a sufficient number of features ?

- Assumption: 

- Linear operator:

- « Noisy » linear measurement:

Noise                                                         small

Intuition: sketching as a linear embedding

Dimensionality-reducing, random, linear embedding: Compressive Sensing?
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Compressive Sensing:

• Dimensionality reduction, random 
operator

• (Ill-posed) inverse problem: density 
estimation

• Sparsity: « simple » densities 
(mixture model)

Classical compressive sensing

Random
matrix

Random
features

averaged
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Classif. Perf.
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- Twice faster than k-means
- 4 orders of magnitude more 

memory efficient
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d = 10, k = 20

Size of database

Error

Application: speaker verification [Reynolds 2000] (d=12, k=64)

• EM on 300 000 vectors : 29.53
• 20kB sketch computed on 50GB database: 28.96

Faster than EM
(VLFeat’s gmm)
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In this talk

Nicolas Keriven12/10/2017

Q: Theoretical guarantees ?

• Inspired by Compressive Sensing:

• 1: with the Restricted Isometry Property (RIP)

• 2: with dual certificates
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a RIP analysis

Joint work with R. Gribonval, G. Blanchard, Y. Traonmilin

Total variation regularization:
a dual certificate analysis
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Recall: Linear inverse problem
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• Estimation problem = linear inverse problem on measures

• Extremely ill-posed !

• Feasibility? (information-preservation)
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Best algorithm
possible

Sketch:
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: Model set of « simple » 
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Information preservation guarantees
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Non-convex generalized moment matching

Goal
Prove the existence of a decoder robust
to noise and stable to modeling error. 

Lower Restricted Isometry Property

« Instance-optimal » decoder
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: random features [Rahimi2007]

to approximate

Basis for LRIP
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W.h.p.

Main result

Nicolas Keriven

Main hypothesis

The normalized secant set    has finite covering numbers.

Quality of pointwise LRIP Dimensionality of the model

Modeling error

- Classic Compressive Sensing: finite dimension: Known
- Here: infinite dimension: Technical

Empirical noise
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With the RIP analysis:

• Moment matching: best decoder possible (instance optimal)
• Information-preservation guarantees

• Fine control on modeling error, noise, and metrics
• Can incorporate k-means cost or log-likelihood

Compressive Sensing:

• Random, dimensionality-reducing operator

• Sparsity

• The information is preserved

• Convex relaxation?
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a RIP analysis

Total variation regularization:
a dual certificate analysis
Joint work with C. Poon, G. Peyré

Conclusion, outlooks
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• Must know

• Non-convex !

Minimization: moment matching

Convex relaxation (« super resolution »)

• : Radon measure

•

• : Total variation (« L1 
norm ») 

Convex:
• can be handled by eg Frank-Wolfe algorithm 

[Boyd 2015], or in some cases as a SDP

Questions:
• Is the measure        sparse ?

• Does it have the right number of components ?

• Does it recover the true                ?
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Such that:

•

• otherwise
•

A bit of convex analysis

Nicolas Keriven12/10/2017

Intuition: first order conditions:        solution

Def. : Dual certificate ( = Lagrange multiplier in the noiseless case…)

What is a dual certificate?

Ensures uniqueness and robustness…

17/21
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Step 1: study full kernel

Step 2: bounding the deviations

Assumptions:
• Kernel « well-behaved »
• sufficiently separated

• Pointwise deviation (concentration ineq.)
• Covering numbers

m=50m=10 m=20
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1: Ideal scaling in sparsity

In progress…

• not necessarily sparse, but:

• Mass of        concentrated around true

• Proof: infinite-dimensional golfing
scheme (new)

2: Minimal norm certificate
[Duval, Peyré 2015]

In progress…

• when n high enough:      sparse, with
right number of components

•

• Proof: adaptation of [Tang, Recht 2013]
(constructive!)
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Sketch learning

Nicolas Keriven

• Sketching :
• Streaming, distributed learning

• Original view on data compression and generalized moments

• Combines random features and kernel mean with infinite
dimensional Compressive sensing
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Summary, outlooks

Nicolas Keriven

• RIP analysis
• Information preservation guarantees
• Fine control on noise, modeling error (instance optimal decoder) and 

recovery metrics
• Necessary and sufficient conditions
• But: Non-convex minimization
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• Outlooks
• Algorithms for TV minimization
• Other features (not necessarily random…)
• Other « sketched » learning tasks
• Multilayer sketches ?



Thank you !

Nicolas Keriven

• Keriven, Bourrier, Gribonval, Pérez. Sketching for Large-Scale Learning of Mixture 
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• Keriven, Tremblay, Traonmilin, Gribonval. Compressive k-means ICASSP, 2017.

• Gribonval, Blanchard, Keriven, Traonmilin. Compressive Statistical Learning with 
Random Feature Moments. Preprint 2017. <arXiv:1706.07180>

• Keriven. Sketching for Large-Scale Learning of Mixture Models. PhD Thesis.                
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• Code: sketchml.gforge.inria.fr,
github: nkeriven


