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- Fourier

- Convolution

Off-the-grid recovery: « super-resolution »

• Signal: Radon measure
• Sparsity:
• Dimensionality reduction (e.g. first Fourier coefficients)
• Recovery: convex relaxation? BLASSO [De Castro, Gamboa 2012]

Other approaches: « Prony-like » ESPRIT, MUSIC… (but only 1d noiseless Fourier)

See Keriven 2017, Gribonval 2017
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Example of applications

Fluorescence microscopy
[Betzig 2006]

Compressive 
k-means
(GMM…) 
[Keriven 2017]

Astronomy
[Puschmann 2017]

• Neuro-imaging with EEG [Gramfort 2013]

• 1-layer neural network [Bach 2017]

• Radar
• Geophysics
• …
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Randomness ? Number
of measurements ?



Compressed sensing off-the-grid [Tang, Recht 2013]

5/14



Compressed sensing off-the-grid [Tang, Recht 2013]

Random Fourier 
coefficients

random

5/14



Compressed sensing off-the-grid [Tang, Recht 2013]

Random Fourier 
coefficients

BLASSO

random

5/14



Compressed sensing off-the-grid [Tang, Recht 2013]

Random Fourier 
coefficients

• As in compressive sensing, random
Fourier sampling is possible

But:
• Limited to 1d Regular Fourier (relies 

heavily on previous work by Candès)

• Random signs assumption

BLASSO

random

5/14



Compressed sensing off-the-grid [Tang, Recht 2013]

Random Fourier 
coefficients

• As in compressive sensing, random
Fourier sampling is possible

But:
• Limited to 1d Regular Fourier (relies 

heavily on previous work by Candès)

• Random signs assumption

BLASSO

Questions:

• More general sampling scheme ?

• Multi-dimensional result ?

• Get rid of random signs ?

random
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solution of

Dual certificates

Measurements

Hilbert space

BLASSO

First-order conditions

Dual certificate (noiseless case)

solution of
BLASSO
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Ensures uniqueness and robustness…

Non-degenerate dual certif.
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Recovery results

Theorem (refinement of [Azaïs et al. 2015])

Hyp: there exists a ND dual certif.
Result: (wrt Bregman divergence)

- not necessarily sparse, but
- Mass of        concentrated around
- Concentration increases when:

noise

Theorem ([Duval Peyré 2015])

Hyp: the minimal norm certificate is 
non-degenerate
Result: (in the small noise regime)

- is sparse, with the right 
number of components

-
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Goal

Strategy: Start with « high »-dimensional problemGoal: random sampling

Step 1: Build ND certificate with full kernel

Step 2: Use Random Features on full kernel to define sampling

m=500m=10 m=50

Assuming

Define

Then

Low-dim, random Ex: full Fourier (high-dim), full convolution (infinite-dim)
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Step 1: Acceptable full kernels

Min. Separation

2: Small adjustements: minimal separation

- Multi-d square Féjer kernel (regular Fourier on Torus)

- Multi-d Gaussian kernel

1: kernel at each saturation point
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Fun application: convex approach for automatic estimation of number of components in a GMM



Number of measurements in practice ?

Nicolas Keriven

Compressive k-means [Keriven 2017]

Relative number of measurements m/(sd)

12/14



Outline

Background on dual certificates

Compressive off-the-grid recovery

Conclusion, outlooks



Summary, outlooks

• Summary: generalization of existing results on super-resolution
with random measurements (and minimal separation)

• Beyond Fourier on the Torus (« acceptable » kernels)
• Multi-d
• No need for random signs for basic recovery result
• Support recovery when random signs (or quadratic number of 

measurements)

13/14



Summary, outlooks

• Summary: generalization of existing results on super-resolution
with random measurements (and minimal separation)

• Beyond Fourier on the Torus (« acceptable » kernels)
• Multi-d
• No need for random signs for basic recovery result
• Support recovery when random signs (or quadratic number of 

measurements)

13/14

• Outlooks
• Other kernels, very different from translation-invariant
• More quantified treatment of dimension
• Other practical applications (eg 1-layer neural networks with continuum of 

neurons [Bach 2017])



Poon, Keriven, Peyré. A Dual Certificates Analysis of Compressive Off-the-Grid Recovery. 
Preprint arxiv:1802.08464

Code: sketchml.gforge.inria.fr,
github: nkeriven

Thank you !
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