Sketched Learning from
Random Features Moments

Nicolas Keriven

Ecole Normale Supérieure (Paris)
CFM-ENS chair in Data Science

(thesis with Rémi Gribonval at Inria Rennes)

ISMP, July 6th 2018 @lLE'I M

IIIIIIIIIIIIIIIIIIIII




Compressive learning

CEM £k psLx 1/15

INSIGHT. DATA.CLARITY.




Compressive learning

Compression Learning
> 7

v

1 m
T1, ...,y € R? Linear sketch z € R

» Sketched learning: First compress data in a linear sketch [Cormode
2011], then learn

CEM &% PsLx 1/15



Compressive learning

Compression Learning
> 7

v

= Rd Linear sketch z € R™
e

» Sketched learning: First compress data in a linear sketch [Cormode
2011], then learn
* Hash tables, count sketches, histograms...

EEM Lk psL* s



Compressive learning

Compression Learning
> 7

v

= Rd Linear sketch z € R™
e

» Sketched learning: First compress data in a linear sketch [Cormode
2011], then learn
* Hash tables, count sketches, histograms...

* Advantages: one-pass, streaming, distributed compression, data
privacy...

CEM PSLx 1/15



Compressive learning

Compression Learning @ L
’ > 5 > ;@
. ™m
L1, Ty C Rd Linear sketch z € R

» Sketched learning: First compress data in a linear sketch [Cormode
2011], then learn
* Hash tables, count sketches, histograms...

* Advantages: one-pass, streaming, distributed compression, data
privacy...

* In this talk: unsupervised learning
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- Assumption: vi.d.
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« ®(x) = [lyep,]™, : histogram - Linear operator: A1 = Ex . ®(X)

* Proposed: kernel random features -« Noisy » linear measurement:
(random proj. + non-linearity) [ 7z — ./4’7'(' + e ]

Noise € = E@(X) — E®(X) small

[ Dimensionality-reducing, random, linear embedding: Compressive Sensing? }
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Example of applications [keriven 2016,2017]

Retrieving mixture of Diracs
from a sketch= k-means
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Example of applications [keriven 2016,2017]
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Example of applications [keriven 2016,2017]

A I' . n=70000 n =1 000 000
. . . . ication: - . 1
Retrieving mixture of Diracs PP . 0%5 ] _ —
from a sketch= k-means Spectral clustering X 09 "
for MNIST g o 0.9 ‘
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- Twice faster than k-means 0.75

- 4 orders of magnitude more —kmeans || 07
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memory efficient

=== === -

5 rep. 1 rep. 5 rep.

Retrieving GMMs from a Application: speaker verification [Reynolds 2000]

sketch
Error:
©)
= e EM on 300 000 samples : 29.53

o e 20kB sketch computed on 50GB database: 28.96
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/ Q: Theoretical guarantees ? \

* Inspired by Compressive Sensing:

e 1:with the Restricted Isometry Property (RIP)

k e 2:with dual certificates J
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Information-preservation guarantees:
a RIP analysis

Joint work with R. Gribonval, G. Blanchard, Y. Traonmilin
Total variation regularization:
a dual certificate analysis

@ Conclusion, outlooks
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Recall: Linear inverse problem

Best algorithm
possible 2 (©)
= > O (&
y/ ~

True distribution: | T1, .-y Ty, ™~ W*]

Sketch: z=Ar* + e ]

e Estimation problem = linear inverse problem on measures
* Extremely ill-posed !

* Feasibility? (information-preservation)
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Information preservation guarantees

S : Model set of « simple »
......................................................................... distributions (eg. GMMs)

............................................................ A(i) e arg mino—ee Hi _ AO_HQ
A , A
Generalized Method of Moments
cm cm
i A/A" / v /
+e ) G
Goal Lower Restricted Isometry Property

Prove the existence of a decoder /\ robust / /
to noise and stable to modeling error. ”U — 0 H 5 HAU — Ao H?

« Instance-optimal » decoder

New goal: find/construct models (5 and operators A that satisfy the LRIP (w.h.p.)
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The normalized secant set S(G) has finite covering numbers.

Result
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Main result [Keriven 2016]

Main hypothesis

The normalized secant set S(G) has finite covering numbers.

1

Result /[ Does not depend on 11 ! ]

For [m > C' x log(cov. num.)],

[ Pointwise concentration ] [ Dimensionality of the model ]
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[ Modeling error ] [ Empirical noise ]
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Main result [Keriven 2016]

Main hypothesis

The normalized secant set S(G) has finite covering numbers.

1

Result /[ Does not depend on 11 ! ]

For [m > C' x log(cov. num.)],

[ Pointwise concentration ] [ Dimensionality of the model ]

W.h.p.
[ Modeling error ] [ Empirical noise ]

rd »
HW* T A(Z)H 5 d(ﬂ'*, 6) + O(l/\/ﬁ)4—_[Doesnotdependon m !]

|

- Classic Compressive Sensing: finite dimension: Known
- Here: infinite dimension: Technical
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Hypotheses (’Zqotzsssnlp jio” Hypotheses
- £ -separated centroids on the dard - Sufficiently separated means
- M- bounded domain for centroids - Bounded domain for means
Sketch Sketch

- Adjusted Random Fourier features (for
technical reasons)

Fourier features
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Application

k-means with mixtures of Diracs GMM with known covariance
Hypotheses (’Zqotzsssnlp jio” Hypotheses
- £ -separated centroids on the dard - Sufficiently separated means
- M- bounded domain for centroids - Bounded domain for means
Sketch Sketch

- Adjusted Random Fourier features (for
technical reasons)

Fourier features

Result Result
- W.r.t. k-means usual cost (SSE) - With respect to log-likelihood
Sketch size Sketch size
m > O (k*d - polylog(k,d)log(M/e)) m > O(k*d - polylog(k,d))

Compared to Generalized Method of moments, different guarantees
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Information-preservation guarantees:
a RIP analysis

@ Total variation regularization:
a dual certificate analysis

Joint work with C. Poon, G. Peyré

@ Conclusion, outlooks
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Total Variation regularization

Previously: RIP analysis

Minimization: moment matching e Must know k

[miné),fw ” Z wiAﬂ'Gi — QHQ] * Non-convex !

Convex relaxation (« super resolution »): Beurling-LASSO (BLASSO) [DeCastro 2015]

 miny, 31/ (Amo)dpu(9) = 23+l o

/4 :Radon measure Questions: _
* Isthe measure [l sparse? [ = Z fw@-(sé,
T

* H ' HTV : Total variation (« L1

* Does it have the right number of components ?
norm »)

* Does it recover the true w;, 6; ?

Nicolas Keriven CEEM s PSL x 11/15
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1: Ideal scaling in sparsity

[l not necessarily right number of
components, but:

Mass of (4 concentrated around true 6,
(weak) robustness to modelling error

m > O(kd* - polylog(k,d))
t .

In progress...

* Proof: infinite-dimensional golfing
scheme (new)

Assumption: data are actually drawn from a GMM...

2: Minimal norm certificate
[Duval, Peyré 2015]
m > O(k?d? - polylog(k,d))
T

In progress...
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Results for separated GMM

1: Ideal scaling in sparsity

[l not necessarily right number of
components, but:

Mass of (4 concentrated around true 6,
(weak) robustness to modelling error

m > O(kd* - polylog(k,d))
t .

In progress...

* Proof: infinite-dimensional golfing
scheme (new)

Assumption: data are actually drawn from a GMM...

2: Minimal norm certificate | .

when n high enough: (1 sparse, with
[Duval, Peyré 2015]

right number of components
m > O(k?d’ - polylog(k,d)) .
4 * 91 — 92
In progress... n—0o0

* Proof: adaptation of [Tang, Recht 2013]
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Information-preservation guarantees:
a RIP analysis

@ Total variation regularization:
a dual certificate analysis

@ Conclusion, outlooks
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Sketch learning

* Sketching :

e Streaming, distributed learning
* Original view on data compression and generalized moments

 Combines random features and kernel mean with infinite
dimensional Compressive sensing
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Summary, outlooks

* RIP analysis
* Information preservation guarantees
* Fine control on noise, modeling error (instance optimal decoder) and
recovery metrics
* Necessary and sufficient conditions
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Summary, outlooks

* RIP analysis
* Information preservation guarantees

* Fine control on noise, modeling error (instance optimal decoder) and
recovery metrics

* Necessary and sufficient conditions

* Dual certificate analysis
* Convex minimization
* In some cases, automatically guess the right number of components

e QOutlooks

e Algorithms for TV minimization

e Other features @ (not necessarily random...)
e Other « sketched » learning tasks

* Multilayer sketches ?
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Thank you !

e Gribonval, Blanchard, Keriven, Traonmilin. Compressive Statistical Learning with
Random Feature Moments. 2017. <arXiv:1706.07180>

* Keriven. Sketching for Large-Scale Learning of Mixture Models. PhD Thesis.
<tel-01620815>

* Poon, Keriven, Peyré. A Dual Certificates Analysis of Compressive Off-the-Grid
Recovery. 2018. <arXiv:1802.08464>

* Code, applications: nkeriven.github.io
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