Sketched Learning from Random Features Moments

Nicolas Keriven

Ecole Normale Supérieure (Paris) CFM-ENS chair in Data Science

(thesis with Rémi Gribonval at Inria Rennes)

ISMP, July 6th 2018

• **Sketched learning**: First compress data in a linear sketch [Cormode 2011], then learn

- **Sketched learning**: First compress data in a linear sketch [Cormode 2011], then learn
 - Hash tables, count sketches, histograms...

- **Sketched learning**: First compress data in a linear sketch [Cormode 2011], then learn
 - Hash tables, count sketches, histograms...
- Advantages: one-pass, streaming, distributed compression, data privacy...

- **Sketched learning**: First compress data in a linear sketch [Cormode 2011], then learn
 - Hash tables, count sketches, histograms...
- Advantages: one-pass, streaming, distributed compression, data privacy...
- In this talk: unsupervised learning

What is a sketch ?

Any *linear* sketch = empirical moments

$$\hat{\mathbf{z}} = \hat{\mathbb{E}}\Phi(X) = \frac{1}{n} \sum_{i} \Phi(x_i)$$

What is a sketch ?

Any *linear* sketch = empirical moments

$$\hat{\mathbf{z}} = \hat{\mathbb{E}}\Phi(X) = \frac{1}{n} \sum_{i} \Phi(x_i)$$

What is a sketch ?

Any *linear* sketch = empirical moments

$$\hat{\mathbf{z}} = \hat{\mathbb{E}}\Phi(X) = \frac{1}{n}\sum_{i}\Phi(x_i)$$

What is contained in a sketch ?

• $\Phi(x) = x$: mean

What is a sketch ?

Any *linear* sketch = empirical moments

$$\hat{\mathbf{z}} = \hat{\mathbb{E}}\Phi(X) = \frac{1}{n}\sum_{i}\Phi(x_i)$$

- $\Phi(x) = x$: mean
- $\bullet \quad \Phi(x) = x^k: \, k^{\rm th} \text{ moment}$

What is a sketch ?

Any *linear* sketch = empirical moments

$$\hat{\mathbf{z}} = \hat{\mathbb{E}}\Phi(X) = \frac{1}{n} \sum_{i} \Phi(x_i)$$

- $\Phi(x) = x$: mean
- $\bullet \quad \Phi(x) = x^k: \, k^{\rm th} \text{ moment}$
- $\Phi(x) = [1_{x \in B_i}]_{i=1}^m$: histogram

What is a sketch ?

Any *linear* sketch = empirical moments

$$\hat{\mathbf{z}} = \hat{\mathbb{E}}\Phi(X) = \frac{1}{n} \sum_{i} \Phi(x_i)$$

- $\Phi(x) = x$: mean
- $\Phi(x) = x^k : k^{\text{th}}$ moment
- $\Phi(x) = [1_{x \in B_i}]_{i=1}^m$: histogram
- Proposed: kernel random features [Rahimi 2007] (random proj. + non-linearity)

What is a sketch ?

Any *linear* sketch = empirical moments

$$\hat{\mathbf{z}} = \hat{\mathbb{E}}\Phi(X) = \frac{1}{n} \sum_{i} \Phi(x_i)$$

What is contained in a sketch ?

- $\Phi(x) = x$: mean
- $\bullet \quad \Phi(x) = x^k: \, k^{\rm th} \text{ moment}$
- $\Phi(x) = [1_{x \in B_i}]_{i=1}^m$: histogram
- Proposed: kernel random features [Rahimi 2007] (random proj. + non-linearity)

Questions:

- What information is preserved by the sketching ?
 - How to retrieve this information ?
- What is a sufficient number of features ?

•

What is a sketch ?

Any *linear* sketch = empirical moments

$$\hat{\mathbf{z}} = \hat{\mathbb{E}}\Phi(X) = \frac{1}{n} \sum_{i} \Phi(x_i)$$

What is contained in a sketch ?

- $\Phi(x) = x$: mean
- $\bullet \quad \Phi(x) = x^k: \, k^{\rm th} \text{ moment}$
- $\Phi(x) = [1_{x \in B_i}]_{i=1}^m$: histogram
- Proposed: kernel random features [Rahimi 2007] (random proj. + non-linearity)

Questions:

- What information is preserved by the sketching ?
 - How to retrieve this information ?
- What is a sufficient number of features ?

Intuition: sketching as a linear embedding

•

What is a sketch ?

Any *linear* sketch = empirical moments

$$\hat{\mathbf{z}} = \hat{\mathbb{E}}\Phi(X) = \frac{1}{n} \sum_{i} \Phi(x_i)$$

What is contained in a sketch ?

- $\Phi(x) = x$: mean
- $\Phi(x) = x^k : k^{\text{th}}$ moment
- $\Phi(x) = [1_{x \in B_i}]_{i=1}^m$: histogram
- Proposed: kernel random features [Rahimi 2007] (random proj. + non-linearity)

Questions:

- What information is preserved by the sketching ?
- How to retrieve this information ?
- What is a sufficient number of features ?

Intuition: sketching as a linear embedding

- Assumption:

$$x_1, \dots, x_n \overset{i.i.d.}{\sim} \pi^*$$

What is a sketch ?

Any *linear* sketch = empirical moments

$$\hat{\mathbf{z}} = \hat{\mathbb{E}}\Phi(X) = \frac{1}{n} \sum_{i} \Phi(x_i)$$

What is contained in a sketch ?

- $\Phi(x) = x$: mean
- $\Phi(x) = x^k : k^{\text{th}}$ moment
- $\Phi(x) = [1_{x \in B_i}]_{i=1}^m$: histogram
- Proposed: kernel random features [Rahimi 2007] (random proj. + non-linearity)

Questions:

- What information is preserved by the sketching ?
- How to retrieve this information ?
- What is a sufficient number of features ?

Intuition: sketching as a linear embedding

- Assumption:

$$x_1, \dots, x_n \stackrel{i.i.d.}{\sim} \pi^*$$

Linear operator:

$$\mathcal{A}\pi = \mathbb{E}_{X \sim \pi} \Phi(X)$$

What is a sketch ?

Any *linear* sketch = empirical moments

$$\hat{\mathbf{z}} = \hat{\mathbb{E}}\Phi(X) = \frac{1}{n} \sum_{i} \Phi(x_i)$$

What is contained in a sketch ?

- $\Phi(x) = x$: mean
- $\bullet \quad \Phi(x) = x^k: \, k^{\rm th} \text{ moment}$
- $\Phi(x) = [1_{x \in B_i}]_{i=1}^m$: histogram
- Proposed: kernel random features [Rahimi 2007] (random proj. + non-linearity)

Questions:

- What information is preserved by the sketching ?
- How to retrieve this information ?
- What is a sufficient number of features ?

Intuition: sketching as a linear embedding

- Assumption: $x_1, .$

$$x_1, ..., x_n \overset{i.i.d.}{\sim} \pi^*$$

- Linear operator: $\mathcal{A}\pi = \mathbb{E}_X$

$$\mathcal{A}\pi = \mathbb{E}_{X \sim \pi} \Phi(X)$$

« Noisy » linear measurement:

$$\hat{\mathbf{z}} = \mathcal{A}\pi^{\star} + \hat{\mathbf{e}}$$

Noise
$$\hat{\mathbf{e}} = \hat{\mathbb{E}} \Phi(X) - \mathbb{E}_{\pi^{\star}} \Phi(X)$$
 small

What is a sketch ?

Any *linear* sketch = empirical moments

$$\hat{\mathbf{z}} = \hat{\mathbb{E}}\Phi(X) = \frac{1}{n} \sum_{i} \Phi(x_i)$$

What is contained in a sketch ?

- $\Phi(x) = x$: mean
- $\Phi(x) = x^k : k^{\text{th}}$ moment
- $\Phi(x) = [1_{x \in B_i}]_{i=1}^m$: histogram
- Proposed: kernel random features [Rahimi 2007] (random proj. + non-linearity)

Questions:

- What information is preserved by the sketching ?
- How to retrieve this information ?
- What is a sufficient number of features ?

Intuition: sketching as a linear embedding

- Assumption: $x_1, ..., x_n$

$$x_1, ..., x_n \overset{i.i.d.}{\sim} \pi^*$$

- Linear operator: $\mathcal{A}\pi = \mathbb{E}_{X\sim\pi}\Phi(X)$

« Noisy » linear measurement:

$$\hat{\mathbf{z}} = \mathcal{A}\pi^{\star} + \hat{\mathbf{e}}$$

Noise
$$\hat{\mathbf{e}} = \hat{\mathbb{E}} \Phi(X) - \mathbb{E}_{\pi^{\star}} \Phi(X)$$
 small

Dimensionality-reducing, random, linear embedding: Compressive Sensing?

Retrieving GMMs from a sketch

Application: **speaker verification** [Reynolds 2000]

Error:

- EM on 300 000 samples : 29.53
- 20kB sketch computed on 50GB database: 28.96

Q: Theoretical guarantees ?

- Inspired by Compressive Sensing:
 - 1: with the Restricted Isometry Property (RIP)
 - 2: with dual certificates

Outline

Information-preservation guarantees: a RIP analysis Joint work with **R. Gribonval, G. Blanchard, Y. Traonmilin**

Total variation regularization: a dual certificate analysis

- Estimation problem = linear inverse problem on measures
- Extremely ill-posed !

PSL *

- Estimation problem = linear inverse problem on measures
- Extremely ill-posed !
- *Feasibility?* (information-preservation)

 \mathfrak{S} : Model set of « simple » distributions (eg. GMMs)

« Instance-optimal » decoder

« Instance-optimal » decoder

Nicolas Keriven

« Instance-optimal » decoder

New goal: find/construct models $\,\mathfrak{S}$ and operators $\,\mathcal{A}\,$ that satisfy the LRIP (w.h.p.)

Goal: LRIP w.h.p. on $\mathcal{A}, \forall \sigma, \sigma' \in \mathfrak{S}, \|\sigma - \sigma'\| \lesssim \|\mathcal{A}\sigma - \mathcal{A}\sigma'\|_2$.

Nicolas Keriven

Goal: LRIP w.h.p. on $\mathcal{A}, \forall \sigma, \sigma' \in \mathfrak{S}, \|\sigma - \sigma'\| \lesssim \|\mathcal{A}\sigma - \mathcal{A}\sigma'\|_2$.

Pointwise LRIP

Construction of \mathcal{A} :

Kernel mean [Gretton 2006, Borgwardt 2006]
Random features [Rahimi 2007]

 $\forall \sigma, \sigma', \text{ w.h.p. on } \mathcal{A}, \text{ LRIP.}$

Goal: LRIP w.h.p. on $\mathcal{A}, \forall \sigma, \sigma' \in \mathfrak{S}, \|\sigma - \sigma'\| \lesssim \|\mathcal{A}\sigma - \mathcal{A}\sigma'\|_2$.

Pointwise LRIP

Construction of $\mathcal A$:

Kernel mean [Gretton 2006, Borgwardt 2006]
Random features [Rahimi 2007]

Extension to LRIP

Covering numbers (compacity) of the normalized secant set $\mathcal{S}(\mathfrak{S})$

 $\forall \sigma, \sigma', \text{ w.h.p. on } \mathcal{A}, \text{ LRIP.}$

Goal: LRIP w.h.p. on $\mathcal{A}, \forall \sigma, \sigma' \in \mathfrak{S}, \|\sigma - \sigma'\| \lesssim \|\mathcal{A}\sigma - \mathcal{A}\sigma'\|_2$.

Pointwise LRIP

Construction of $\mathcal A$:

Kernel mean [Gretton 2006, Borgwardt 2006]
Random features [Rahimi 2007]

Extension to LRIP

Covering numbers (compacity) of the normalized secant set $\mathcal{S}(\mathfrak{S})$

Subset of a unit ball (infinite dimension) that only depends on \mathfrak{S}

 $\forall \sigma, \sigma', \text{ w.h.p. on } \mathcal{A}, \text{ LRIP.}$

Pointwise LRIP

Construction of \mathcal{A} :

Kernel mean [Gretton 2006, Borgwardt 2006]
Random features [Rahimi 2007]

 $\forall \sigma, \sigma', \text{ w.h.p. on } \mathcal{A}, \text{ LRIP.}$

w.h.p. on $\mathcal{A}, \forall \sigma, \sigma'$, LRIP.

Extension to LRIP

Covering numbers (compacity) of the normalized secant set $\mathcal{S}(\mathfrak{S})$

Subset of a unit ball (infinite dimension) that only depends on \mathfrak{S}

Main hypothesis

Main hypothesis

Main hypothesis

Main hypothesis

Main hypothesis

Main hypothesis

Main hypothesis

- Classic Compressive Sensing: finite dimension: Known
- Here: infinite dimension: Technical

k-means with mixtures of Diracs

Hypotheses

- \mathcal{E} separated centroids
- $M\mathchar`-$ bounded domain for centroids

k-means with mixtures of Diracs (no assumption Hypotheses on the **data**) $\ensuremath{\mathcal{E}}$ - separated centroids -M- bounded domain for centroids -

k-means with mixtures of Diracs

Hypotheses

- \mathcal{E} separated centroids
- M- bounded domain for centroids

Sketch

- Adjusted Random Fourier features (for technical reasons)

(no assumption

on the **data**)

k-means with mixtures of Diracs

Hypotheses

- \mathcal{E} separated centroids
- M- bounded domain for centroids

Sketch

- Adjusted Random Fourier features (for technical reasons)

Result

- W.r.t. k-means usual cost (SSE)

(no assumption

on the **data**)

k-means with mixtures of Diracs

Hypotheses

- \mathcal{E} separated centroids
- M- bounded domain for centroids

Sketch

- Adjusted Random Fourier features (for technical reasons)

Result

- W.r.t. k-means usual cost (SSE)

Sketch size

$$m \geq \mathcal{O}\left(\mathbf{k^2 d} \cdot \operatorname{polylog}(k, d) \log(M/\varepsilon) \right)$$

(no assumption

on the **data**)

 Hypotheses - E - separated centroids M- bounded domain for centroids Sketch Adjusted Random Fourier features (for technical reasons) 					
 M- bounded domain for centroids Sketch Adjusted Random Fourier features (for technical reasons) 	tion ()				
Sketch - Adjusted Random Fourier features (for technical reasons)					
- Adjusted Random Fourier features (for technical reasons)	Sketch				
- Adjusted Random Fourier features (for technical reasons)					
Result					
 W.r.t. k-means usual cost (SSE) 					
Sketch size					
$m \geq \mathcal{O}\left(\mathbf{k^2d} \cdot \mathtt{polylog}(k, d) \log(M/d) \right)$					

GMM with known covariance

k-means with mixtures of Diracs		GMM with known covariance
Hypotheses(no assumption on the data)- \mathcal{E} - separated centroidson the data)- M - bounded domain for centroids		Hypotheses - Sufficiently separated means - Bounded domain for means
Sketch - Adjusted Random Fourier features (for technical reasons)		
Result - W.r.t. k-means usual cost	(SSE)	
Sketch size $m \geq \mathcal{O}\left(oldsymbol{k}^2 oldsymbol{d} \cdot extsf{polylog}(k, oldsymbol{d}) ight)$	$d)\log(M/\varepsilon)\bigr)$	

k-means with mixtures of Diracs	GMM with known covariance
Hypotheses(no assumption on the data)- \mathcal{E} - separated centroidson the data)- M - bounded domain for centroids	Hypotheses - Sufficiently separated means - Bounded domain for means
Sketch - Adjusted Random Fourier features (for technical reasons)	Sketch - Fourier features
Result - W.r.t. k-means usual cost (SSE)	
$\begin{array}{l} \textbf{Sketch size} \\ m \geq \mathcal{O}\left(\pmb{k^2d} \cdot \texttt{polylog}(k,d) \log(M/\varepsilon) \right) \end{array}$	

k-means with mixtures of Diracs	GMM with known covariance
Hypotheses(no assumption on the data)- \mathcal{E} - separated centroids(no assumption on the data)- M - bounded domain for centroids	Hypotheses - Sufficiently separated means - Bounded domain for means
Sketch - Adjusted Random Fourier features (for technical reasons)	Sketch - Fourier features
Result - W.r.t. k-means usual cost (SSE)	Result - With respect to log-likelihood
Sketch size $m \geq \mathcal{O}\left(\frac{k^2 d}{k^2 \cdot \operatorname{polylog}(k,d) \log(M/\varepsilon)} \right)$	

k-means with mixtures of Diracs	GMM with known covariance
Hypotheses(no assumption on the data)- \mathcal{E} - separated centroidson the data)- M - bounded domain for centroids	 Hypotheses Sufficiently separated means Bounded domain for means
Sketch - Adjusted Random Fourier features (for technical reasons)	Sketch - Fourier features
Result - W.r.t. k-means usual cost (SSE)	Result - With respect to log-likelihood
$\begin{array}{l} \textbf{Sketch size} \\ m \geq \mathcal{O}\left(\pmb{k^2d} \cdot \texttt{polylog}(k,d) \log(M/\varepsilon) \right) \end{array}$	$\begin{array}{l} \textbf{Sketch size} \\ m \geq \mathcal{O}(\textbf{\textit{k}}^2\textbf{\textit{d}} \cdot \texttt{polylog}(k, d)) \end{array}$

Compared to Generalized Method of moments, **different** guarantees

Outline

Information-preservation guarantees: a RIP analysis

Total variation regularization: a dual certificate analysis Joint work with **C. Poon, G. Peyré**

Previously: RIP analysis

Minimization: moment matching

$$\left[\min_{\theta, w} \|\sum w_i \mathcal{A} \pi_{\theta_i} - \hat{\mathbf{z}}\|_2
ight]$$

Previously: RIP analysis

Minimization: moment matching

• Must know k

$$\min_{\theta, w} \| \sum w_i \mathcal{A} \pi_{\theta_i} - \hat{\mathbf{z}} \|_2$$

• Non-convex !

Previously: RIP analysis

Minimization: moment matching

• Must know k

$$\min_{\theta, w} \| \sum w_i \mathcal{A} \pi_{\theta_i} - \hat{\mathbf{z}} \|_2$$

• Non-convex !

Convex relaxation (« super resolution »): Beurling-LASSO (BLASSO) [DeCastro 2015]

$$\min_{\mu} \frac{1}{2} \| \int (\mathcal{A}\pi_{\theta}) d\mu(\theta) - \hat{\mathbf{z}} \|_{2}^{2} + \lambda \|\mu\|_{\mathrm{TV}}$$

- μ : Radon measure
- $\|\cdot\|_{TV}$: Total variation (« L1 norm »)

Previously: RIP analysis

Minimization: moment matching

• Must know k

$$\min_{\theta, w} \| \sum w_i \mathcal{A} \pi_{\theta_i} - \hat{\mathbf{z}} \|_2$$

• Non-convex !

Convex relaxation (« super resolution »): Beurling-LASSO (BLASSO) [DeCastro 2015]

$$\min_{\mu} \frac{1}{2} \left\| \int (\mathcal{A}\pi_{\theta}) d\mu(\theta) - \hat{\mathbf{z}} \right\|_{2}^{2} + \lambda \|\mu\|_{\mathrm{TV}}$$

- μ : Radon measure
- $\|\cdot\|_{TV}$: Total variation (« L1 norm »)

Questions:

- Is the measure $\,\mu\,$ sparse ? $\,\mu=\sum ilde{w}_i \delta_{ ilde{ heta}_i}\,$
- Does it have the right number of components ?
- Does it recover the true w_i, θ_i ?

Dual certificate analysis:

(= Lagrange multiplier)

Dual certificate analysis:

(= Lagrange multiplier)

Function
$$\eta(\theta) = \langle \mathbf{h}, \mathcal{A}\pi_{\theta} \rangle_{\mathbb{C}^m}$$

Dual certificate analysis:

(= Lagrange multiplier)

Function
$$\eta(heta)=\langle \mathbf{h},\mathcal{A}\pi_{ heta}
angle_{\mathbb{C}^m}$$

Such that:

- $\eta(\theta_i) = 1$
- + $|\eta(\theta)| < 1~$ otherwise
- $\nabla^2 \eta(\theta_i) \prec 0$

Dual certificate analysis:

(= Lagrange multiplier)

Function
$$\eta(heta) = \langle \mathbf{h}, \mathcal{A} \pi_{ heta}
angle_{\mathbb{C}^m}$$

Such that:

- $\eta(\theta_i) = 1$
- + $|\eta(\theta)| < 1~$ otherwise
- $\nabla^2 \eta(\theta_i) \prec 0$

Step 1: study full kernel [Candes 2013] Assume θ_i sufficiently separated

$$m = \infty$$

Dual certificate analysis:

(= Lagrange multiplier)

Function
$$\eta(\theta) = \langle \mathbf{h}, \mathcal{A}\pi_{\theta} \rangle_{\mathbb{C}^m}$$

Such that:

- $\eta(\theta_i) = 1$
- + $|\eta(\theta)| < 1~$ otherwise
- $\nabla^2 \eta(\theta_i) \prec 0$

Step 1: study full kernel [Candes 2013] Assume θ_i sufficiently separated

 $m = \infty$

Step 2: bounding the deviations

Dual certificate analysis:

(= Lagrange multiplier)

Function
$$\eta(\theta) = \langle \mathbf{h}, \mathcal{A}\pi_{\theta} \rangle_{\mathbb{C}^m}$$

Such that:

- $\eta(\theta_i) = 1$
- + $|\eta(\theta)| < 1~$ otherwise
- $\nabla^2 \eta(\theta_i) \prec 0$

Step 1: study full kernel [Candes 2013]

Assume $heta_i$ sufficiently separated

Step 2: bounding the deviations

Dual certificate analysis:

(= Lagrange multiplier)

Function
$$\eta(\theta) = \langle \mathbf{h}, \mathcal{A}\pi_{\theta} \rangle_{\mathbb{C}^m}$$

Such that:

- $\eta(\theta_i) = 1$
- + $|\eta(\theta)| < 1~$ otherwise
- $\nabla^2 \eta(\theta_i) \prec 0$

Step 1: study full kernel [Candes 2013]

Assume $heta_i$ sufficiently separated

Step 2: bounding the deviations

Dual certificates

Dual certificate analysis:

(= Lagrange multiplier)

Function
$$\eta(\theta) = \langle \mathbf{h}, \mathcal{A}\pi_{\theta} \rangle_{\mathbb{C}^m}$$

Such that:

- $\eta(\theta_i) = 1$
- + $|\eta(\theta)| < 1~$ otherwise
- $\nabla^2 \eta(\theta_i) \prec 0$

Step 1: study full kernel [Candes 2013]

Assume $heta_i$ sufficiently separated

Step 2: bounding the deviations

1: Ideal scaling in sparsity

1: Ideal scaling in sparsity

 $m \geq \mathcal{O}(\pmb{k} d^4 \cdot \texttt{polylog}(k, d))$

1: Ideal scaling in sparsity

$$m \geq \mathcal{O}(\frac{kd^4}{\uparrow} \cdot \operatorname{polylog}(k, d))$$

1: Ideal scaling in sparsity

$$m \geq \mathcal{O}(\frac{kd^4}{\uparrow} \cdot \operatorname{polylog}(k, d))$$

- $\tilde{\mu}$ not necessarily right number of components, but:
- Mass of $ilde{\mu}\,$ concentrated around true $heta_i$
- (weak) robustness to modelling error
- *Proof*: infinite-dimensional golfing scheme (new)

1: Ideal scaling in sparsity

$$m \geq \mathcal{O}(\frac{kd^4}{\uparrow} \cdot \operatorname{polylog}(k, d))$$

- $\tilde{\mu}$ not necessarily right number of components, but:
- Mass of $ilde{\mu}\,$ concentrated around true $heta_i$
- (weak) robustness to modelling error
- *Proof*: infinite-dimensional golfing scheme (new)

Assumption: data are *actually* drawn from a GMM...

2: Minimal norm certificate

[Duval, Peyré 2015]

$$m \geq \mathcal{O}(\frac{k^2 d^3}{\uparrow} \cdot \operatorname{polylog}(k, d))$$

1: Ideal scaling in sparsity

$$m \geq \mathcal{O}(\frac{kd^4}{\uparrow} \cdot \operatorname{polylog}(k, d))$$

in progress...

- μ not necessarily right number of *components*, but:
- Mass of μ concentrated around true θ_i
- (weak) robustness to modelling error
- *Proof*: infinite-dimensional golfing scheme (new)

Assumption: data are *actually* drawn from a GMM...

2: Minimal norm certificate

[Duval, Peyré 2015]

$$m \geq \mathcal{O}(\frac{k^2 d^3}{1000} \cdot \operatorname{polylog}(k, d))$$

when *n* high enough: $\tilde{\mu}$ sparse, with right number of components

•
$$\tilde{\theta}_i \xrightarrow[n \to \infty]{} \theta_i$$

Proof: adaptation of [Tang, Recht 2013]

Outline

Information-preservation guarantees: a RIP analysis

Total variation regularization: a dual certificate analysis

Sketch learning

- Sketching :
 - Streaming, distributed learning
 - Original view on data compression and generalized moments
 - Combines random features and kernel mean with infinite dimensional Compressive sensing

Summary, outlooks

RIP analysis

- Information preservation guarantees
- Fine control on noise, modeling error (instance optimal decoder) and recovery metrics
- Necessary and sufficient conditions

Summary, outlooks

RIP analysis

- Information preservation guarantees
- Fine control on noise, modeling error (instance optimal decoder) and recovery metrics
- Necessary and sufficient conditions

• Dual certificate analysis

- Convex minimization
- In some cases, automatically guess the right number of components

Summary, outlooks

RIP analysis

- Information preservation guarantees
- Fine control on noise, modeling error (instance optimal decoder) and recovery metrics
- Necessary and sufficient conditions

• Dual certificate analysis

- Convex minimization
- In some cases, automatically guess the right number of components

Outlooks

- Algorithms for TV minimization
- Other features Φ (not necessarily random...)
- Other « sketched » learning tasks
- Multilayer sketches ?

- Gribonval, Blanchard, Keriven, Traonmilin. Compressive Statistical Learning with Random Feature Moments. 2017. <arXiv:1706.07180>
- Keriven. Sketching for Large-Scale Learning of Mixture Models. PhD Thesis. <tel-01620815>
- Poon, Keriven, Peyré. A Dual Certificates Analysis of Compressive Off-the-Grid Recovery. 2018. <arXiv:1802.08464>
- Code, applications: nkeriven.github.io

