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Compression Learning

Linear sketch

• Sketched learning: First compress data in a linear sketch [Cormode 

2011], then learn
• Hash tables, count sketches, histograms…

• Advantages: one-pass, streaming, distributed compression, data 
privacy… 

• In this talk: unsupervised learning
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What is contained in a sketch ?

• : mean

• :         moment

• : histogram

• Proposed: kernel random features 
[Rahimi 2007]

(random proj. + non-linearity)

Questions:

• What information is preserved by the sketching ? 

• How to retrieve this information ?

• What is a sufficient number of features ?

- Assumption: 

- Linear operator:

- « Noisy » linear measurement:

Noise                                                         small

Intuition: sketching as a linear embedding

Dimensionality-reducing, random, linear embedding: Compressive Sensing?
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Application: 
Spectral clustering
for MNIST 
classification
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- Twice faster than k-means
- 4 orders of magnitude more 

memory efficient

Retrieving GMMs from a 
sketch

Application: speaker verification [Reynolds 2000]

Error:

• EM on 300 000 samples : 29.53
• 20kB sketch computed on 50GB database: 28.96



In this talk
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Q: Theoretical guarantees ?

• Inspired by Compressive Sensing:

• 1: with the Restricted Isometry Property (RIP)

• 2: with dual certificates
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Outline
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Information-preservation guarantees: 
a RIP analysis

Joint work with R. Gribonval, G. Blanchard, Y. Traonmilin

Total variation regularization:
a dual certificate analysis

Conclusion, outlooks



Recall: Linear inverse problem

Nicolas Keriven 5/15



True distribution:

Recall: Linear inverse problem

Nicolas Keriven 5/15

Sketch:



True distribution:

Recall: Linear inverse problem

Nicolas Keriven

• Estimation problem = linear inverse problem on measures

• Extremely ill-posed !

5/15

Sketch:



True distribution:

Recall: Linear inverse problem

Nicolas Keriven

• Estimation problem = linear inverse problem on measures

• Extremely ill-posed !

• Feasibility? (information-preservation)
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Best algorithm
possible

Sketch:
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W.h.p.

Main result [Keriven 2016]

Nicolas Keriven

Main hypothesis

The normalized secant set    has finite covering numbers.

Pointwise concentration Dimensionality of the model

Modeling error

- Classic Compressive Sensing: finite dimension: Known
- Here: infinite dimension: Technical

Empirical noise

8/15

Does not depend on         !
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Previously: RIP analysis

• Must know

• Non-convex !

Minimization: moment matching

Convex relaxation (« super resolution »): Beurling-LASSO (BLASSO) [DeCastro 2015]

• : Radon measure

• : Total variation (« L1 
norm ») 

Questions:
• Is the measure        sparse ?

• Does it have the right number of components ?

• Does it recover the true                ?
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Step 1: study full kernel [Candes 2013]

Step 2: bounding the deviations

Assume       sufficiently separated

m=50m=10 m=20
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Dual certificate analysis:

( = Lagrange multiplier)

Such that:

•

• otherwise
•

Function
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In progress…

• not necessarily right number of 
components, but:

• Mass of        concentrated around true
• (weak) robustness to modelling error

• Proof: infinite-dimensional golfing
scheme (new)

2: Minimal norm certificate
[Duval, Peyré 2015]

In progress…

• when n high enough:      sparse, with
right number of components

•

• Proof: adaptation of [Tang, Recht 2013]
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Sketch learning
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• Sketching :
• Streaming, distributed learning

• Original view on data compression and generalized moments

• Combines random features and kernel mean with infinite
dimensional Compressive sensing
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• Outlooks
• Algorithms for TV minimization
• Other features (not necessarily random…)
• Other « sketched » learning tasks
• Multilayer sketches ?



Thank you !
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• Gribonval, Blanchard, Keriven, Traonmilin. Compressive Statistical Learning with 
Random Feature Moments. 2017. <arXiv:1706.07180>

• Keriven. Sketching for Large-Scale Learning of Mixture Models. PhD Thesis.                
<tel-01620815>

• Poon, Keriven, Peyré. A Dual Certificates Analysis of Compressive Off-the-Grid 
Recovery. 2018. <arXiv:1802.08464>

• Code, applications: nkeriven.github.io


