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- Fourier coeff
- Convolution

Continuous sparsity ?

• Signal: Radon measure
• Sparsity:
• Dimensionality reduction (e.g. first Fourier coefficients)
• Recovery: convex relaxation? BLASSO [De Castro, Gamboa 2012]

Other approaches: « Prony-like » ESPRIT, MUSIC… (but only 1d noiseless Fourier)

See Keriven 2017, Gribonval 2017
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Example of applications

Fluorescence microscopy (3D)  
PALM, STORM… [Betzig 2006]

Compressive 
mixture model 
learning
(many D)
[Keriven 2017]

Astronomy (2D)
[Puschmann 2017]

• Neuro-imaging with EEG (3D) [Gramfort 2013]

• 1-layer neural network (many D)  [Bach 2017]

• Radar
• Geophysics
• …
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Many extensions 
since…
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Relevant previous works:

• [Tang, Recht 2013]:                                            random Fourier coefficients are sufficient
• Random signs assumption
• 1D discrete Fourier

• [Bendory et al. 2016]: extension to other measurement operators
• Minimal separation does not take into account geometry of the meas. operator

• [Duval, Peyré 2015]: In some cases, support stability in the small noise regime
• Noise level under which support stability is achieved?

Contributions:

• Generalize to many multi-d measurement operators, express the minimal separation 
as a geometry-aware Fisher metric

• 1: Remove the random sign assumption (weak convergence)

• 2: Prove support stability when                          (with random signs)
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The BLASSO problem:

Noisy measurement:Random linear operator:
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What is a dual certificate ?

What does it look like ?

7/14

Ensures uniqueness and robustness…

Non-degenerate dual certif.

Intuitively:

Larger -> easier
interpolation
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Step 1: Study the limit case                to derive an appropriate notion of minimal separation

Step 2: bound the deviation for finite number of measurements

Step 3: recovery
• Adaptation of [Azaïs 2015] for weak convergence
• Quantitative Implicit Function Theorem [Denoyelle 2015] for support stability
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How to construct a certificate ?
Study limit covariance kernel when :

Strategy under minimal separation

Sub-sampled version:
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Which metric for separation ?

Classical case: translation-invariant kernel Non translation-inv. ?

Kernel for microscopy

Riemannian metric associated to a kernel [Amari 99]:

: metric tensor : geodesic distance

Thm: under some hypothesis, for                              , there exists non-degenerate

natural
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• The recovered measure concentrate around true Diracs

• Proof: golfing scheme 
[Gross 2009, Candès Plan 2011]

Thm: Support stability

Depend on kernel

With random signs Without random signs

12/14

• Quantified small noise : if                                                , then:                                                  

• The recovered measure is formed of exactly        Diracs 



Applications

16/04/2018

• Féjer kernel (discrete Fourier):

13/14



Applications

16/04/2018

• Féjer kernel (discrete Fourier):

• Microscopy with Laplace transform: 

13/14



Applications

16/04/2018

• Féjer kernel (discrete Fourier):

• Microscopy with Laplace transform: 

• Application: Gaussian Mixture Model learning

13/14



Applications

16/04/2018

• Féjer kernel (discrete Fourier):

• Microscopy with Laplace transform: 

• Application: Gaussian Mixture Model learning

• Given

13/14



Applications

16/04/2018

• Féjer kernel (discrete Fourier):

• Microscopy with Laplace transform: 

• Application: Gaussian Mixture Model learning

• Given

• Compute                                                            with Gaussian  

13/14

(streaming, distributed)



Applications

16/04/2018

• Féjer kernel (discrete Fourier):

• Microscopy with Laplace transform: 

• Application: Gaussian Mixture Model learning

• Given

• Compute                                                            with Gaussian  

• Solve the BLASSO with          as characteristic function of a Gaussian

13/14

(streaming, distributed)



Applications

16/04/2018

• Féjer kernel (discrete Fourier):

• Microscopy with Laplace transform: 

• Application: Gaussian Mixture Model learning

• Given

• Compute                                                            with Gaussian  

• Solve the BLASSO with          as characteristic function of a Gaussian

Then: if 

The BLASSO yields exactly s Diracs: non-asymptotic model selection !

13/14

(streaming, distributed)



Outline

Background on dual certificates

Minimal separation and Fisher metric

Conclusion, outlooks

Main results, applications



Summary, outlooks

• Summary: generalization of existing results on super-resolution
with random measurements (and minimal separation)

• Introduction of the kernel Fisher metric to measure minimal separation
• Application in particular to a non-translation-invariant example for microscopy

• No need of random signs for weak convergence (golfing scheme)
• Quantitative support stability

14/14



Summary, outlooks

• Summary: generalization of existing results on super-resolution
with random measurements (and minimal separation)

• Introduction of the kernel Fisher metric to measure minimal separation
• Application in particular to a non-translation-invariant example for microscopy

• No need of random signs for weak convergence (golfing scheme)
• Quantitative support stability

14/14

• Outlooks
• Implication of support stability for algorithms ? (active field)
• Better characterization of the « universality » of the geodesic distance
• More quantified treatment of dimension
• Other practical applications (eg 1-layer neural networks with continuum of 

neurons [Bach 2017])



Poon, Keriven, Peyré. A Dual Certificates Analysis of Compressive Off-the-Grid Recovery. 
Preprint arxiv:1802.08464

Poon, Keriven, Peyré. Support Localization and the Fisher Metric for off-the-grid Sparse 
Regularization. Preprint arxiv:1810.03340
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