Exponentially smoothed spectral clustering
and dynamic stochastic block model

N. Keriven!, Samuel Vaiter?

'Ecole Normale Supérieure, Paris (CFM-ENS chair)

?Institut de Mathématiques de Bourgogne

GraphSig May 2019

CEEM

INSIGHT.DATA.CLARITY.

Spectral Clustering

Cluster the nodes of a
graph using its structure.

Applicationin :

- Social network analysis
- Protein analysis

- etc

CEM £ psLx 1/17

AAAAAAAAAAAAAAAA <o

Spectral Clustering

Cluster the nodes of a
graph using its structure.

Applicationin :

- Social network analysis
- Protein analysis

- etc

Classical algorithm:

EEM £k psLx 117

Spectral Clustering

Cluster the nodes of a
graph using its structure.

Applicationin :

Social network analysis
Protein analysis

- etc

Classical algorithm:
A

- Take W =<XD-—- A
Id — D Y2AD—1/2

CEM £ psLx 1/17

AAAAAAAAAAAAAAAA <o

Spectral Clustering

Cluster the nodes of a
graph using its structure.

Applicationin :

- Social network analysis
- Protein analysis

- etc

Classical algorithm: Eigenvectors :
A

- Take W =<XD-—- A
Id — D Y2AD—1/2

0.1
0.0

~0.1 4

- Computeitsk-SvD W = UAUT, U = U.1:k

0.1

0.0

~0.1 4

CEM £ psLx 1/17

AAAAAAAAAAAAAAAA <o

Spectral Clustering

Cluster the nodes of a
graph using its structure.

Applicationin :

- Social network analysis
- Protein analysis

- etc

Classical algorithm: Eigenvectors :
A

- Take W =<XD-—- A
Id — D Y2AD—1/2

0.1
0.0

~0.1 4

- Computeitsk-SvD W = UAUT, U = U.1:k

0.1

- Cluster the rows of {/ with k-means

0.0

~0.1 4

CEM £ psLx 1/17

AAAAAAAAAAAAAAAA <o

Spectral Clustering

Cluster the nodes of a
graph using its structure.

Applicationin :
- Social network analysis
- Protein analysis

- etc
Classical algorithm: Eigenvectors :
A
- Take W =<{D—-A
Id— D 1/2AD—1/2
- Computeitsk-SvD W = UAUT, U = U.1:k

0.1

- Cluster the rows of {/ with k-means

0.0

~0.1 4

- Many many (fast) variants... ©oom e e W W

CEM £ psLx 1/17

AAAAAAAAAAAAAAAA <o

SBM : theoretical analysis

Stochastic Block Model (SBM)

Qg5 ™~ BGI‘(Bkg)
when ©;;, =1,0,, =1

0 € {0, 1}”XK: matrix of communities (only one 1 by row) [Of course : Bgr > By]

CEM £k psLx

AAAAAAAAAAAAAAAAAA

SBM : theoretical analysis

Stochastic Block Model (SBM)

Qg5 ™~ BGI‘(Bkg)
when ©;;, =1,0,, =1

0 € {0, 1}”XK: matrix of communities (only one 1 by row) [Of course : Bgr > By]

Theoretical results (non-exhaustive...)

CEM £k psLx

AAAAAAAAAAAAAAAAAA

SBM : theoretical analysis

Stochastic Block Model (SBM)

Qg5 ™~ BGI‘(Bkg)
when ©;;, =1,0,, =1

0 € {0, 1}”XK: matrix of communities (only one 1 by row) [Of course : Bgr > By]

Theoretical results (non-exhaustive...)

Recently solved conjecture(s)
[Krzakala et al., Mossel et al, Massoulie et al...]

CEM £k psLx

AAAAAAAAAAAAAAAAAA

SBM : theoretical analysis

Stochastic Block Model (SBM)

Qg5 ™~ BGI‘(Bkg)
when ©;;, =1,0,, =1

0 € {0, 1}”XK: matrix of communities (only one 1 by row) [Of course : Bgr > By]

Theoretical results (non-exhaustive...)

Recently solved conjecture(s)
[Krzakala et al., Mossel et al, Massoulie et al...]

- Sparse SBM Bkk- — %7Bk€ — %

CEM £k psLx

AAAAAAAAAAAAAAAAAA

SBM : theoretical analysis

Stochastic Block Model (SBM)

Qg5 ™~ BGI‘(Bkg)
when ©;;, =1,0,, =1

O c {0, 1}” XK. matrix of communities (only one 1 by row)

Theoretical results (non-exhaustive...)

Recently solved conjecture(s)
[Krzakala et al., Mossel et al, Massoulie et al...]

- Sparse SBM Bkk- — %7Bk€ — %

- When n — oo , detectability
threshold for any algorithm wrt a, b

CEM

AAAAAAAAAAAAAAAAAA

'
ENS

[Of course : Brr > By]

PSLx

SBM : theoretical analysis

Stochastic Block Model (SBM)

Qg5 ™~ BGI‘(Bkg)
when ©;;, =1,0,, =1

O c {0, 1}” XK. matrix of communities (only one 1 by row)

Theoretical results (non-exhaustive...)

Recently solved conjecture(s)
[Krzakala et al., Mossel et al, Massoulie et al...]

- Sparse SBM Bkk- — %7Bk€ — %

- When n — oo , detectability
threshold for any algorithm wrt a, b

- Case K > 3 still open...

CEM

AAAAAAAAAAAAAAAAAA

ENS

[Of course : Brr > By]

PSLx

SBM : theoretical analysis

Stochastic Block Model (SBM)

Qg5 ™~ BGI‘(Bkg)
when ©;;, =1,0,, =1

0 € {0, 1}”XK: matrix of communities (only one 1 by row) [Of course : Bgr > By]

Theoretical results (non-exhaustive...) Non-asymptotic analysis

Recently solved conjecture(s) [Lei 2015]
[Krzakala et al., Mossel et al, Massoulie et al...]

- Sparse SBM Bkk- — %7Bk€ — %

- When n — oo , detectability
threshold for any algorithm wrt a, b

- Case K > 3 still open...

EEM £ psLx

AAAAAAAAAAAAAAAAAA

SBM : theoretical analysis

Stochastic Block Model (SBM)

Qg5 ™~ BGI‘(Bkg)
when ©;;, =1,0,, =1

0 € {0, 1}”XK: matrix of communities (only one 1 by row) [Of course : Bgr > By]

Theoretical results (non-exhaustive...) Non-asymptotic analysis

Recently solved conjecture(s) [Lei 2015]
[Krzakala et al., Mossel et al, Massoulie et al...]

- Sparse SBM Bkk- — %7Bk€ — %

- When n — oo , detectability
threshold for any algorithm wrt a, b

- Case K > 3 still open...

EEM 4k psLx

AAAAAAAAAAAAAAAAAA

SBM : theoretical analysis

Stochastic Block Model (SBM)

Qg5 ™~ BGI‘(Bkg)
when ©;;, =1,0,, =1

0 € {0, 1}”XK: matrix of communities (only one 1 by row) [Of course : Bgr > By]

Theoretical results (non-exhaustive...) Non-asymptotic analysis

Recently solved conjecture(s) [Lei 2015]
[Krzakala et al., Mossel et al, Massoulie et al...]

- SCwith W = A

- Sparse SBM: By = %»Bkﬁ - % 1
ogn

- Almost sparse: Byy ~ «,, >

- When n — oo , detectability
threshold for any algorithm wrt a, b

- Case K > 3 still open...

EEM 4k psLx

AAAAAAAAAAAAAAAAAA

SBM : theoretical analysis

Stochastic Block Model (SBM)

Gy,;j ~ BGI‘(Bkg)
when ©;;, =1,0,, =1

0 € {0, 1}”XK: matrix of communities (only one 1 by row) [Of course : Bgr > By]

Theoretical results (non-exhaustive...) Non-asymptotic analysis

Recently solved conjecture(s) [Lei 2015]
[Krzakala et al., Mossel et al, Massoulie et al...]

- Sparse SBM Bkk- — %7Bk€ — %

- Almost sparse: By ~ o, > loin

- When n — oo , detectability
threshold for any algorithm wrt a,b| | - Withproba 1 —n"":

1(6,0) < K]

~ NQp

- Case K > 3 still open...

L(©,0) = minp ||[OP — 0|

EEM 4k psLx

AAAAAAAAAAAAAAAAAA

Dynamic Spectral Clustering

CEM £k psLx 317

Dynamic Spectral Clustering

Goal

Exploit past data to:

EEM £k psix 3w

Dynamic Spectral Clustering

Goal

Exploit past data to:
- Track communities

EEM £k psix 3w

Dynamic Spectral Clustering

Goal

Exploit past data to:
- Track communities
- Enforce smoothness/consistency

EEM £k psix 3w

Dynamic Spectral Clustering

Goal

Exploit past data to:

- Track communities

- Enforce smoothness/consistency
- Improve result at time t

EEM £k psix 3w

Dynamic Spectral Clustering

Goal

Exploit past data to:
- Track communities
- Enforce smoothness/consistency

- Improve result at time t
- Does not want to apply SC several
times !

EEM £k psix 3w

AAAAAAAAAAAAAAAA

Dynamic Spectral Clustering

Goal

Exploit past data to:
- Track communities
- Enforce smoothness/consistency

- Improve result at time t
- Does not want to apply SC several
times !

Many approaches :

- Incremental / hierarchical

- Maximum Likelihood / Bayesian
- Variational...

CEM £k psLx 317

AAAAAAAAAAAAAAAAAA

Dynamic Spectral Clustering

Goal Simple(st): Smoothing of adjacency matrix + SC

Exploit past data to:
- Track communities
- Enforce smoothness/consistency

- Improve result at time t
- Does not want to apply SC several
times !

Many approaches :

- Incremental / hierarchical

- Maximum Likelihood / Bayesian
- Variational...

CEM £k psLx 317

AAAAAAAAAAAAAAAAAA

Dynamic Spectral Clustering

Goal

Exploit past data to:

Track communities
Enforce smoothness/consistency

Improve result at time t
- Does not want to apply SC several
times !

Many approaches :

Incremental / hierarchical
Maximum Likelihood / Bayesian
Variational...

Simple(st): Smoothing of adjacency matrix + SC

- Uniform average ? [Pensky 2017]

1 i
At — let—’w Al
- May need to keep a lot of past data in
memory...

CEM £k psLx

AAAAAAAAAAAAAAAA

Dynamic Spectral Clustering

Goal

Exploit past data to:

Track communities
Enforce smoothness/consistency

Improve result at time t
- Does not want to apply SC several
times !

Many approaches :

Incremental / hierarchical
Maximum Likelihood / Bayesian
Variational...

Simple(st): Smoothing of adjacency matrix + SC

- Uniform average ? [Pensky 2017]

1 i
At — let—’w Al
- May need to keep a lot of past data in
memory...

- Here : Exponential Smoothing [chi 2007, xu 2010...]
At — (]. - A)At_l +)\At

- More appropriate for online computing

CEM £k psLx 317

AAAAAAAAAAAAAAAAAA

Dynamic SBM

Dynamic Stochastic Block Model (SBM)

CEM &k psLx 47

AAAAAAAAAAAAAAAAAA

Dynamic SBM

Dynamic Stochastic Block Model (SBM)

Hidden Markov Model (HMM)

CEM £k psLx

AAAAAAAAAAAAAAAA

Dynamic SBM

Dynamic Stochastic Block Model (SBM)

Hidden Markov Model (HMM)
- At each time step, each node change
community with proba &

PO, =105 ' =1)=1-¢
PO, =10, =1)=¢/(K — 1)

CEM £k psLx

AAAAAAAAAAAAAAAA

Dynamic SBM

Dynamic Stochastic Block Model (SBM))

e Markow Model (HAVI P(Ol, =110} =1)=1-¢

Hidden Markov Model (HMM t t—1 1\ B

- At each time step, each node change PO =110; =1)=¢/(K—1)
community with proba & (a;?j ~ Ber(B)

- Given cluster membership, SBM is generated

L
-

-

| when O =1,j¢ @EE =

CEM £k psLx

AAAAAAAAAAAAAAAA

Dynamic SBM

L l

Ay Ao Ay

Dynamic Stochastic Block Model (SBM)

(

PO}, =105 =1)=1-¢

Hidden Markov Model (HMM) 9 . -1
- At each time step, each node change PO =118, =1) =¢/(K 1)
community with proba & (4t~ Ber(Bye)
- Given cluster membership, SBM is generated \ %quen Of —1.icOl —
- To simplify, connectivity matrix does not change 7 ik = 4] gt

CEM £k psLx

AAAAAAAAAAAAAAAA

Dynamic SBM

Uniform Average [Pensky et al. 2017]
- Uniform smoothing A, = Zf o A
=t—w

CEM £k psLx 517

AAAAAAAAAAAAAAAAAA

Dynamic SBM

Uniform Average [Pensky et al. 2017]

) , : Tt
U.nlform smoothing o B A, = Zl:t_w A
- Simpler model, deterministic communities

CEM £k psLx 517

AAAAAAAAAAAAAAAAAA

Dynamic SBM

Uniform Average [Pensky et al. 2017]
_ . . L t
U.nlform smoothing o B A, = Zl:t_w A
- Simpler model, deterministic communities
- at most s nodes change between time steps

CEM £k psLx 517

AAAAAAAAAAAAAAAAAA

Dynamic SBM

Uniform Average [Pensky et al. 2017]
_ . . L t
U.nlform smoothing o B A, = Zl:t_w A
- Simpler model, deterministic communities
- at most s nodes change between time steps

Under same hypotheses, with optimal window size:

L(6!,0!) < % min (1, \/sa,)

CEM £k psLx 517

AAAAAAAAAAAAAAAAAA

Dynamic SBM

Uniform Average [Pensky et al. 2017]

_ . . —_ L t
U.nlform smoothing o B A = Zl:t_w A
- Simpler model, deterministic communities
- atmost s nodes change between time steps | Asymptotically better if:
Under same hypotheses, with optimal window size: s —of L — 0 1
n no,) logn

L(6!,0!) < % min (1, \/sa,)

« The more people (in each group),
the less likely you are to change
communities... »

CEM £k psLx 517

AAAAAAAAAAAAAAAAAA

Dynamic SBM

Uniform Average [Pensky et al. 2017]

- Uniform smoothing
- Simpler model, deterministic communities

- at most s nodes change between time steps

‘th — Z;:t—w Al

Under same hypotheses, with optimal window size:

L(6!,0!) < % min (1, \/sa,)

- Choice of window size problematic !
- May necessitate to keep every data in memory...

Asymptotically better if:

o) o s
n Ny, logn

« The more people (in each group),
the less likely you are to change
communities... »

)

- The method indicated in [Pensky2017] does not work in practice !

CEM

AAAAAAAAAAAAAAAAAA

Dopstx 57

Dynamic SBM

Uniform Average [Pensky et al. 2017]

) , : Tt
U.nlform smoothing o B A, = Zl:t_w A
- Simpler model, deterministic communities
- atmost s nodes change between time steps | Asymptotically better if:

Under same hypotheses, with optimal window size: s _ 0(1) _ 0(1)
A 52 _ n noy,) logn
L(©' e < oo nin (1, /sam)

« The more people (in each group),

the less likely you are to change
- Choice of window size problematic ! communities... »
- May necessitate to keep every data in memory...
- The method indicated in [Pensky2017] does not work in practice !

- How does the exponential model perform ? A; = (1 — A\)A;_1 + AA;

Q

CEM £k psLx

AAAAAAAAAAAAAAAA

Dynamic SBM

Uniform Average [Pensky et al. 2017]
Uniform smoothing

Simpler model, deterministic communities

‘th — Z;:t—w Al

at most s nodes change between time steps

Under same hypotheses, with optimal window size:

L(6!,0!) < % min (1, \/sa,)

Q

Choice of window size problematic !

Asymptotically better if:

o) o s
n Ny, logn

« The more people (in each group),
the less likely you are to change
communities... »

)

May necessitate to keep every data in memory...

The method indicated in [Pensky2017] does not work in practice !

How does the exponential model perform ? 4; = (1 — A\)A; 1 + A,
Can we get the same / improve theoretical guarantees ? For HMM ?

CEM

AAAAAAAAAAAAAAAA

Dk psLx

Dynamic SBM

Uniform Average [Pensky et al. 2017]
Uniform smoothing

Simpler model, deterministic communities

‘th — Z;:t—w Al

at most s nodes change between time steps

Under same hypotheses, with optimal window size:

L(6!,0!) < % min (1, \/sa,)

Q

Choice of window size problematic !

Asymptotically better if:

o) o s
n Ny, logn

« The more people (in each group),
the less likely you are to change
communities... »

)

May necessitate to keep every data in memory...

The method indicated in [Pensky2017] does not work in practice !

How does the exponential model perform ? 4; = (1 — A\)A; 1 + A,
Can we get the same / improve theoretical guarantees ? For HMM ?
Can we design an efficient way to select the forgetting factor ?

CEM

AAAAAAAAAAAAAAAA

Dk psLx

POOE

Main result

Choosing the forgetting factor

Experiments

Conclusion (Bonus : GNN ?)

€EM £k PsLx

o)

6/17

EEM £k

INSIGHT.DATA.CLARITY, o

}_1,5 = (1 —)\)}_1]5_1 +)\At — [Your favorite (approx. ?) SC algo.]

CEM 4k psLx 6/17

AAAAAAAAAAAAAAAA

At:

(1-NA

Theorem:

CEM £k psLx

AAAAAAAAAAAAAAAA

6/17

}_1,5 = (1 —)\)}_1]5_1 +)\At — [Your favorite (approx. ?) SC algo.]

Theorem:

Assume t > t i, = % log(ann/N)

log(1/(1=X))

(to reduce effect of initialization)

EEM £k psx e

AAAAAAAAAAAAAAAA

}_1,5 = (1 —)\)}_1]5_1 +)\At — [Your favorite (approx. ?) SC algo.]

Theorem:

Assume t > t i, = % log(ann/N)

log(1/(1=X))

(to reduce effect of initialization)

Choose A = * = O(min(1, /na,¢))

EEM £k psx e

AAAAAAAAAAAAAAAA

}_1,5 = (1 —)\)}_1]5_1 +)\At — [Your favorite (approx. ?) SC algo.]

Theorem:

Assume t >t = %lgiég((l‘;?f_/i)))

Choose A = * = O(min(1, /na,¢))

If [Zn > log(n) J , with probability 1 —n~" on O, A :

A n

(to reduce effect of initialization)

~ 2N/
CEM ES L

6/17

At = (1 —)\)z‘_lt_1 +)\At — [Your favorite (approx. ?) SC algo.]

Theorem:

Assume t >t = % log(ann/A) (to reduce effect of initialization)

log(1/(1=X))

Choose A = * = O(min(1, /na,¢))

A n

If [Zn > log(n) J , with probability 1 —n~" on O, A :

CEM £k psLx

6/17

A= (1-1)A

Theorem:

Assume t >ty = %Ié;gég??f_/ig) (to reduce effect of initialization)

Choose A = * = O(min(1, /na,¢))

If [QT” > @ J , with probability 1 —n~" on O, A :

- Same rate as [Pensky 2017] with € = s/n

EEM £k psx e

}it — (1 -)\)}_lt—1 + ANy —— [Your favorite (approx. ?) SC algo.]

Theorem:

log(1/(1=X))

Choose A = * = O(min(1, /na,¢))

A

If [Zn > @ J , with probability 1 —n~" on O, A :

Assume t >t = % log(ann/A) (to reduce effect of initialization)

- Same rate as [Pensky 2017] with € = s/n

- Can handle the sparse case if € = O (W) (which was already assumed in [Pensky2017] !)

CEM £k psLx

6/17

- Same rate as [Pensky 2017] with € = s/n

- Can handle the sparse case if € = O (W) (which was already assumed in [Pensky2017] !)

}_1,5 = (1 —)\)}_1]5_1 +)\At — [Your favorite (approx. ?) SC algo.]

Theorem:

log(1/(1=X))

Choose A = * = O(min(1, /na,¢))

A

If [Zn > @ J , with probability 1 —n~" on O, A :

Assume t >t = % log(ann/A) (to reduce effect of initialization)

Can « zero-out » the elements of }It that are < (1 — \)'=i» to keep it « sparse »

~ 2N/
CEM ES L

6/17

Sketch of proof (1)

Step 1 [Lei 2015] :

Sketch of proof (1)

Step 1 [Lei 2015] :

- Define P} = @tB@tT (probability of connection between every two nodes)

CEM £k psx

Sketch of proof (1)

Step 1 [Lei 2015] :
- Define P} = @tB@tT (probability of connection between every two nodes)

- Apply perturbation theory (Davis-Kahan thm.) to show that for any matrix ¥
used for spectral clustering, A 2
L(©%0") < oz W - Bi?

AAAAAAAAAAAAAAAAAA

Sketch of proof (1)

Step 1 [Lei 2015] :
- Define P} = @tB@tT (probability of connection between every two nodes)

- Apply perturbation theory (Davis-Kahan thm.) to show that for any matrix ¥
used for spectral clustering, A 2
L(©%0") < oz W - Bi?

Step 2 : bound Hz‘_lt — PtH

EEM 4k psLx

AAAAAAAAAAAAAAAAAA

Sketch of proof (1)

Step 1 [Lei 2015] :
- Define P} = @tB@t (probability of connection between every two nodes)

- Apply perturbation theory (Davis-Kahan thm.) to show that for any matrix ¥
used for spectral clustering, A 2
L(©%0") < oz W - Bi?

Step 2 : bound Hz‘_lt — PtH

- [Lei 2015] : |A: — P|| < O(/nay,)

EEM 4k psLx

AAAAAAAAAAAAAAAAAA

Sketch of proof (1)

Step 1 [Lei 2015] :
- Define P} = @tB@tT (probability of connection between every two nodes)

- Apply perturbation theory (Davis-Kahan thm.) to show that for any matrix ¥
used for spectral clustering, A 2
L(©%0") < oz W - Bi?

Step 2 : bound Hz‘_lt — PtH

- [Lei 2015] : |A: — P|| < O(/nay,)

- [Pensky 2017]: || A, — Pi|| < O(\/nay, min(1, (a,s)**)) (for ideal window size)

EEM fk psix

Sketch of proof (1)

Step 1 [Lei 2015] :
- Define P} = @tB@tT (probability of connection between every two nodes)

- Apply perturbation theory (Davis-Kahan thm.) to show that for any matrix ¥
used for spectral clustering, A 2
L(©%0") < oz W - Bi?

Step 2 : bound Hz‘_lt — PtH

- [Lei 2015] : Ay — P|| < O(/nay,)

- [Pensky 2017]: || A, — Pi|| < O(\/nay, min(1, (a,s)**)) (for ideal window size)

- Us: |A; — P|| < O(y/nay, min(1, (na,e)'/4)) (for ideal X)

EEM fk psix

Sketch of proof (2)

How to bound || 4; — P;|| ?

Sketch of proof (2)

How to bound ||A; — P;|| ?

- Decompose ||A: — Pi|| < |4t — Bl + ||P: — P:|| where B, = (1 - \)P,_; + AP, = E(A4,)

Sketch of proof (2)

How to bound ||A; — P;|| ?
- Decompose ||A: — Pi|| < |4t — Bi|| + ||Pr — P:|| where B, = (1 \)P,_; + AP, = E(A4,)

Advanced matrix concentration inequality,
similar to [Lei 2015]

EEM £ psLx

AAAAAAAAAAAAAAAAAA

Sketch of proof (2)

How to bound ||A; — P;|| ?

- Decompose ||A: — Pi|| < |4t — Bi|| + ||Pr — P:|| where B, = (1 \)P,_; + AP, = E(A4,)

Advanced matrix concentration inequality,
similar to [Lei 2015]

||At — pt” S 51(A) .= Ol\/ TLOdn)\

Sketch of proof (2)

How to bound ||A; — P;|| ?

- Decompose ||A: — Pi|| < |4t — Bi|| + ||Pr — P:|| where B, = (1 \)P,_; + AP, = E(A4,)

Advanced matrix concentration inequality,
similar to [Lei 2015]

||At — pt” S 51(A) .= Ol\/ TLOdn)\

Spectral Norm
- [] w E= w

[\When)\\(]

0.0 0.2 0.4 0.6 0.8 1.0
lambda

Sketch of proof (2)

How to bound ||A; — P;|| ?

- Decompose ||A: — Pi|| < |4t — Bi|| + ||P: — P:|| where B, = (1—\)P,_; + AP, = E(A4,)

Advanced matrix concentration inequality, Only depends on the Markov chain ©

similar to [Lei 2015] -
A 2 P, — B <d3(N) :=C /)
|4 — Pl < 81(N) := Civnap A [Pt — Pif| < d2(A) anam /5

Spectral Norm
- [] w E= w

[\When)\\(]

0.0 0.2 0.4 0.6 0.8 1.0
lambda

EEM £k pPsLx

Sketch of proof (2)

How to bound ||A; — P;|| ?

- Decompose ||A: — Pi|| < |4t — Bi|| + ||P: — P:|| where B, = (1—\)P,_; + AP, = E(A4,)

Advanced matrix concentration inequality, Only depends on the Markov chain ©

similar to [Lei 2015] -
A 2 P, — B <d3(N) :=C /)
|4 — Pl < 81(N) := Civnap A [Pt — Pif| < d2(A) anam /5

w

(]

Spectral Norm

[fwhen)\\]

Spectral Norm
- [] w E= w

[\When)\\(]

0

0.0 0.2 0.4 0.6 0.8 1.0
lambda

0.0 0.2 0.4 0.6 0.8 1.0
lambda

CEM £k psx

Sketch of proof (2)

How to bound ||A; — P;|| ?

- Decompose ||A: — Pi|| < |4t — Bi|| + ||P: — P:|| where B, = (1—\)P,_; + AP, = E(A4,)

Advanced matrix concentration inequality, Only depends on the Markov chain ©
similar to [Lei 2015] —
||Pt — Pt” S 62()\) = Ogn@n\/é

||At — pt” S 51(A) .= Ol\/ TLOdn)\

w

Spectral Norm

0

0.0 0.2 0.4 0.6 0.8 1.0
lambda

§5
[\When)\\(] %; [/‘When)\\(]
0.0 0.2 Cl'a4mb‘2:l5a 0.8 1.0
£\
X = argmin(8,(N) + 82(N) = CoCy e £

EEM £k pPsLx

0.0

0.2 0.4 0.6 0.8 1.0
lambda

Sketch of proof (3)

Lei’s concentration inequality for (sum of) Bernoulli matrices

CEM £k psLx

AAAAAAAAAAAAAAAAAA

Sketch of proof (3)

Lei’s concentration inequality for (sum of) Bernoulli matrices

- Step1:write ||A — P|| = max,csz' (A— P)x

EEM £ psLx

AAAAAAAAAAAAAAAAAA

Sketch of proof (3)

Lei’s concentration inequality for (sum of) Bernoulli matrices

- Step1:write [|A— P|| = maxzesz' (A— P)r ~ max, yegz ' (A — P)y

-
=3

G : Appropriate grid

/A \//§ \; L0,
i)

CEM £k psx

AAAAAAAAAAAAAAAAAA

Sketch of proof (3)

Lei’s concentration inequality for (sum of) Bernoulli matrices

- Step1:write [|A— P|| = maxzesz' (A— P)r ~ max, yegz ' (A — P)y

-
. ®

G : Appropriate grid

/A \//§ \V/ Ly,
Mo

- Observation: ¥' (A — P)z =3, xiy;(ai; — pij) but directly applying Bernstein does not work !

CEM £k psx

AAAAAAAAAAAAAAAAAA

Sketch of proof (3)

Lei’s concentration inequality for (sum of) Bernoulli matrices

- Step1:write [|A— P|| = maxzesz' (A— P)r ~ max, yegz ' (A — P)y

-
. ®

G : Appropriate grid

/A \//§ \; L0,
i)

- Observation: ¥' (A — P)z =3, xiy;(ai; — pij) but directly applying Bernstein does not work !

- Step 2: decompose Zi,j x’iyj(a’ij o p’ij) - Zx@-yj small wiyj(a’ij o pij) + Z:ciyj large Lyl (aij o pij)

CEM £k psx

AAAAAAAAAAAAAAAAAA

Sketch of proof (3)

Lei’s concentration inequality for (sum of) Bernoulli matrices

- Step1:write [|A— P|| = maxzesz' (A— P)r ~ max, yegz ' (A — P)y

-
. ®

G : Appropriate grid

/A \//§ \V/ Ly,
Mo

- Observation: ¥' (A — P)z =3, xiy;(ai; — pij) but directly applying Bernstein does not work !

- Step 2: decompose Zi,j x’iyj(a’ij o p’ij) - Zx@-yj small wiyj(a’ij o pij) + Z:ciyj large Lyl (aij o pij)

e

Bernstein ok

CEM £k psx

AAAAAAAAAAAAAAAAAA

Sketch of proof (3)

Lei’s concentration inequality for (sum of) Bernoulli matrices

- Step1:write [|A— P|| = maxzesz' (A— P)r ~ max, yegz ' (A — P)y

G : Appropriate grid

/A \//§ \V/ Ly,

- Observation: ¥' (A — P)z =3, xiy;(ai; — pij) but directly applying Bernstein does not work !

- Step 2: decompose Zi,j x’iyj(a’ij o p’ij) - Zx@-yj small wiyj(a’ij o pij) + Z:ciyj large Lyl (aij o pij)

Bernstein ok

e *

—— |- Can bebounded uniformly forall z,y € G !

CEM £k psx

AAAAAAAAAAAAAAAAAA

Sketch of proof (3)

Lei’s concentration inequality for (sum of) Bernoulli matrices

- Step1:write [|A— P|| = maxzesz' (A— P)r ~ max, yegz ' (A — P)y

S
>

G : Appropriate grid

\,

N i

i >t
I

atl \/A \V/4

W8
\

- Observation: ¥' (A — P)z =3, xiy;(ai; — pij) but directly applying Bernstein does not work !

- Step 2: decompose Zi,j x’iyj(a’ij o p’ij) - Zx@-yj small wiyj(a’ij o pij) + Z:ciyj large Lyl (aij o pij)

Bernstein ok

e *

—— |- Can bebounded uniformly forall z,y € G !
- Proof « specific » to Bernoulli matrices, not SBM
- Good chance that it could be further generalized

CEM £k psx

AAAAAAAAAAAAAAAAAA

Sketch of proof (3)

Lei’s concentration inequality for (sum of) Bernoulli matrices

- Step1:write [|A— P|| = maxzesz' (A— P)r ~ max, yegz ' (A — P)y

=
[><

e e
S>> ‘o. g .
gt >

.

G : Appropriate grid

atl \/A \V/4

W8
\

- Observation: ¥' (A — P)z =3, xiy;(ai; — pij) but directly applying Bernstein does not work !

- Step 2: decompose Zz’,j xiyj(a’ij o pij) - Zﬂ?iyj small wiyj(a’ij o pij) + Ziﬂiyj large Li¥Yj (aij o pij)

/ *
—— |- Can bebounded uniformly forall z,y € G !
Bernstein ok - Proof « specific » to Bernoulli matrices, not SBM

- Good chance that it could be further generalized
- Future work: other applications ?

CEM 4k psLx

AAAAAAAAAAAAAAAAAA

Main result

Choosing the forgetting factor

Experiments

QIOIONG

Conclusion (Bonus : GNN ?)

€EM £k PsLx

Grid of forgetting factors

How to choose)\ ?

€EM £k PsLx

Grid of forgetting factors

How to choose)\ ?

[Pensky 2017]: how to choose window size ?

€EM £k PsLx

Grid of forgetting factors

How to choose)\ ?

- [Pensky 2017]: how to choose window size ?
- keep all data in memory (offline)

€EM £k PsLx

Grid of forgetting factors

How to choose)\ ?

- [Pensky 2017]: how to choose window size ?
- keep all data in memory (offline)
- choose window size a posteriori using Lepski’s method
- Does not work in practice ! (no numerics in [Pensky 2017])

CEM £k psLx

AAAAAAAAAAAAAAAAAA

Grid of forgetting factors

How to choose)\ ?

- [Pensky 2017]: how to choose window size ?
- keep all data in memory (offline)
- choose window size a posteriori using Lepski’s method
- Does not work in practice ! (no numerics in [Pensky 2017])

- [Xu 2010]: perform a spectral clustering at each time step, choose an adaptive \;
- In our case, we do not want to perform SC at each time step !

EEM 4k psLx

AAAAAAAAAAAAAAAAAA

Grid of forgetting factors

How to choose)\ ?

[Pensky 2017]: how to choose window size ?
- keep all data in memory (offline)
- choose window size a posteriori using Lepski’s method
- Does not work in practice ! (no numerics in [Pensky 2017])

[Xu 2010]: perform a spectral clustering at each time step, choose an adaptive)\;
- In our case, we do not want to perform SC at each time step !

Proposed : maintain online several A;()\;),...,A;(Ay) , choose only when SC desired.

CEM £k psLx

AAAAAAAAAAAAAAAAAA

Grid of forgetting factors

How to choose)\ ?

[Pensky 2017]: how to choose window size ?
- keep all data in memory (offline)
- choose window size a posteriori using Lepski’s method
- Does not work in practice ! (no numerics in [Pensky 2017])

[Xu 2010]: perform a spectral clustering at each time step, choose an adaptive)\;
- In our case, we do not want to perform SC at each time step !

Proposed : maintain online several A;()\;),...,A;(Ay) , choose only when SC desired.

00

Grid of forgetting factors

How to choose)\ ?

- [Pensky 2017]: how to choose window size ?
- keep all data in memory (offline)
- choose window size a posteriori using Lepski’s method
- Does not work in practice ! (no numerics in [Pensky 2017])

- [Xu 2010]: perform a spectral clustering at each time step, choose an adaptive \;
- In our case, we do not want to perform SC at each time step !

Proposed : maintain online several A;()\;),...,A;(Ay) , choose only when SC desired.

- Possible to maintain strong smoothing (small forgetting
P factors) without additional computational load
- Does not necessitate access to raw past data

nn

Method 1 : Lepski

Method 1 : Adaptation of Lepski’s method

€EM £k PsLx

Method 1 : Lepski

Method 1 : Adaptation of Lepski’s method

Lemma
Assume that VAi — v/ Ai—1 <7 and @y, is known. Choose A; such that

Then with probability atleast 1 — Nn—",
1A,(N\:) = P|| < 66* + 5v\/nan,

CEM) psLx

Method 1 : Lepski

Method 1 : Adaptation of Lepski’s method

Lemma
Assume that VAi — v/ Ai—1 <7 and @y, is known. Choose A; such that

Then with probability atleast 1 — Nn—",
1A,(N\:) = P|| < 66* + 5v\/nan,

O(6*) if 7= O((nane)'/*)
N = O((nape)~Y4)

CEM) psLx

Method 1 : Lepski

Method 1 : Adaptation of Lepski’s method

Lemma
Assume that VAi — v/ Ai—1 <7 and @y, is known. Choose A; such that

Then with probability atleast 1 — Nn—",
1A,(N\:) = P|| < 66* + 5v\/nan,

4.0

O(6*) if 7= O((nane)'/*)
N = O((nape)~Y4)

3.5 1

3.0 ~

2.5 1

2.0 ~

1.5

1.0 ~

0.5 4

0.0 A

T T T T T
0.2 0.4 0.6 0.8 1.0

CEM £ psLx 11/17

Method 1 : Lepski

Method 1 : Adaptation of Lepski’s method

Lemma
Assume that VAi — v/ Ai—1 <7 and @y, is known. Choose A; such that

Then with probability atleast 1 — Nn—",
1A,(N\:) = P|| < 66* + 5v\/nan,

4.0

O(6*) if 7= O((nane)'/*)
N = O((nape)~Y4)

3.5 1

3.0 ~

2.5 1

2.0 ~

1.5

1.0 ~

0.5 4

0.0 A

T T T T
0.2 0.4 .6 0.8 1.0

CEM £ psLx 11/17

Method 1 : Lepski

Method 1 : Adaptation of Lepski’s method

Lemma
Assume that VAi — v/ Ai—1 <7 and @y, is known. Choose A; such that

Then with probability atleast 1 — Nn—",
1A,(N\:) = P|| < 66* + 5v\/nan,

4.0

O(6*) if 7= O((nane)'/*)
N = O((nape)~Y4)

3.5 1

3.0 ~

2.5 1

2.0 ~

Problem :
The theoretical expression for 6;(\) = CivnapA
is not tight | Unusable in practice....

1.5

1.0 ~

0.5 4

0.0 A

Here C1 = 0.5 for illustrative purpose, in
theory C; > 2892 | Many proof artifacts...

CEM £ psLx 11/17

Method 2 : proxy for P

Method 2 : Proxy for P,

Goal: minimize ||f_1t()\i) — P , but P; unknown.

Method 2 : proxy for P

Method 2 : Proxy for P,

Goal: minimize ||f_1t()\i) — P , but P; unknown.

Idea: Replace it with a proxy.

Method 2 : proxy for P

Method 2 : Proxy for P,

Goal: minimize ||f_1t()\i) — P , but P; unknown.

Idea: Replace it with a proxy.

- Estimate P, from Ay
- (Spectral Clustering + maximum likelihood)

CEM £k psLx

AAAAAAAAAAAAAAAAAA

Method 2 : proxy for P

Method 2 : Proxy for P,

Goal: minimize ||f_1t()\i) — P , but P; unknown.

Idea: Replace it with a proxy.

- Estimate P, from Ay

(Spectral Clustering + maximum likelihood)

- Minimize ||/_1t()\z) - pt”

EEM £k pPsLx

Method 2 : proxy for P

Method 2 : Proxy for P,

Goal: minimize ||f_1t()\i) — P , but P; unknown.

Idea: Replace it with a proxy.

- Estimate P, from Ay
- (Spectral Clustering + maximum likelihood)

- Minimize ||/_1t()\z) - pt”

- Repeat with the new A;()\;) and iterate ?

CEM £k psLx

AAAAAAAAAAAAAAAAAA

Method 2 : proxy for P

Method 2 : Proxy for P,

Goal: minimize ||f_1t()\i) — P , but P; unknown.

Idea: Replace it with a proxy.

- Estimate P, from Ay
- (Spectral Clustering + maximum likelihood)

- Minimize ||/_1t()\z) - pt”

- Repeat with the new A;()\;) and iterate ?

Usually diverge ! ®

sted Rand Index
o o o o

Adju

CEM £k psLx

AAAAAAAAAAAAAAAAAA

Method 2 : proxy for P

Method 2 : Proxy for P,

Goal: minimize ||f_1t()\i) — Pt| , but P; unknown.

Idea: Replace it with a proxy.

- Estimate P, from Ay
- (Spectral Clustering + maximum likelihood)

- Minimize ||/_1t()\z) - pt”

- Repeat with the new A;()\;) and iterate ?

Explanation ? The spectral norm may not be the best criterion !

Usually diverge ! ®

Adjusted Rand Index

Iteration

Adjusted Rand Index

e
©

o
@

o
3

=4
o

o
«n

o
kS

o
w

o —
S

T
0.2

T
0.4

CEM £k psx

rrrrrrrrrrr

O.‘ﬁ
lambda

ananananan

T
0.8

T
1.0

Spectral Norm

Pl
n

»
=)

w
7]

w
o

~
o

%

S
5

Method 2 : proxy for P

Method 2 : Proxy for P,

Goal: minimize ||f_1t()\i) — Pt| , but P; unknown.

Idea: Replace it with a proxy.

- Estimate P, from Ay
- (Spectral Clustering + maximum likelihood)

- Minimize ||/_1t()\z) - pt”

- Repeat with the new A;()\;) and iterate ?

1 i p) . . |
Usually diverge ! ® Explanation ? The spectral norm may not be the best criterion !
, 0,34: \ The first one is §o -
E 0.80 1 USUG//y Very gOOd ! E 0.7 ;Z; N
Eom (« 2-step » estimator) Y i)
=, 3 054 [x
-g 0.76 _g N
0 1 ZIteratiDnS 4 5 0.0 0.2 0.4 |ambd§6 0.8 10 0.0 0.2 0.4 Iambd;ﬁ 0.8 10

CEM £k psx

AAAAAAAAAAAAAAAAAA

Method 3 : finite differences (in progress...)

Method 3 : Derivative and finite differences) //
Observation : the function f(Xi) = Hx"It()\i) — Pt|| that we are trying to \ /
minimize looks convex... N

aaaaaa

CEM £k psLx

AAAAAAAAAAAAAAAAAA

Method 3 : finite differences (in progress...)

Method 3 : Derivative and finite differences) //
Observation : the function (i) = [|[4:(A\;) — P%|| that we are trying to |
minimize looks convex...
% . \.\\ /_ .
Ai)—f (A= 2.\ /
Idea : minimize the derivative ? (still unknown 1) g(A\;) = LI ;\z_{f_z)l = M

aaaaaa

CEM £k psLx

AAAAAAAAAAAAAAAA

Method 3 : finite differences (in progress...)

Method 3 : Derivative and finite differences) /

Observation : the function f(Xi) = Hx"It()\i) — Pi|| that we are trying to
minimize looks convex...

Ai — }\i— \
Idea : minimize the derivative ? (still unknown !) g(/\i) — LK Az—{g_l 1)
— — B ".‘\\)
Final procedure : minimize an upper bound [h()\z) — ||At()‘;)—ft()‘i1)|} e
A v — | fambda o .

CEM £k psLx

AAAAAAAAAAAAAAAA

Method 3 : finite differences (in progress...)

Method 3 : Derivative and finite differences) /

Observation : the function f(Xi) = Hx"It()\i) — Pi|| that we are trying to
minimize looks convex...

_ S =f(Aia)]
Ai—Ai—1

Idea : minimize the derivative ? (still unknown !) g(/\z-)

Ai—Ai_1

aaaaaaa

Final procedure : minimize an upper bound [h(&) _ IIAt(Ai)—At(Ail)q wl ._

Lemma
NN € (A

Assume that whp f is strongly convex and 0 < ¢ < f” < Con an interval [A, X] ,and A — X =7~
Then, whp, we have

C

_ s
|A:(\;) — P|| <20+ C (,Y 4 3Cy+49 /7)

CEM £k psLx

AAAAAAAAAAAAAAAAAA

Method 3 : finite differences (in progress...)

Method 3 : Derivative and finite differences . //
Observation : the function f(Ai) = Hx"It()\i) — P4|| that we are trying to
minimize looks convex... '
Idea : minimize the derivative ? (still unknown !) g(/\z-) = I Az—{g_l 1)
. - AN
Final procedure : minimize an upper bound [h()\z) — ||At()‘;)—;\4t()\i1)|} e
i—Ai—1)T .t
Lemma
M € (A

Assume that whp f is strongly convex and 0 < ¢ < f” < Con an interval [A, X] ,and A — X =7~
Then, whp, we have

C

_ s
|A:(\;) — P|| <20+ C (,Y 4 3Cy+49 /7)

Gives the right rate if : v = @(m) c,C = O((ann)_1/48_3/4)

CEM £k psLx

AAAAAAAAAAAAAAAAAA

Method 3 : finite differences (in progress...)

Method 3 : Derivative and finite differences) /

Observation : the function f(Xi) = Hx"It()\i) — Pi|| that we are trying to
minimize looks convex...

_ S =f(Aia)]
Ai—Ai—1

Idea : minimize the derivative ? (still unknown !) g(/\z-)

Ai—Ai_1

aaaaaaa

Final procedure : minimize an upper bound [h()\i) _ IIAt(/\i)—At(AH)q e —

Lemma
NN € (A

Assume that whp f is strongly convex and 0 < ¢ < f” < Con an interval [A, X] ,and A — X =7~
Then, whp, we have

C

_ s
|A:(\;) — P|| <20+ C (,y 4 3Cy+49 /7)

Gives the right rate if : v = @(m) c,C = O((ann)_1/48_3/4)

Future work: actually proving the convexity ?

For now: the upper bound (51(/\) + 09 (/\) has the right strong convexity on [CL/*, b/*]

CEM £k psLx

AAAAAAAAAAAAAAAA

Main result

Choosing the forgetting factor

Experiments

POWOE

Conclusion (Bonus : GNN ?)

€EM £k PsLx

Illustration on synthetic data

Quality of clustering |[«—>||A; — P;|| < [|[A; — Pi|| + || B — Pl| < 51(X\) + 52(N)

!

(3 = o)

Illustration on synthetic data

Quality of clustering |[«—>||A; — P;|| < [|[A; — Pi|| + || B — Pl| < 51(X\) + 52(N)

Ik

(3 o)

Illustration on synthetic data

Quality of clustering

|| A — Pl < [[Ay = Bl + | P = Pl < 61(A) + 02(N)

n = 500,
k=5, —
o = O(IO%ET)) ¥ Min. norm
l =
O(logQ(ﬂ))

aaaaaaa

14/17

i

?

S

)

Illustration on synthetic data

Quality of clustering

n = 500,
k=5,

o — O(log(n))7

n

£ = O(—l(n))

log?

|IbarA-P||

|| bar A-P ||

|l bar A-P|

5.0
— eps =0.01
45 eps = 0.05
eps =0.1
10 W Min. norm (unknown)
35
/
3.0
25
2.0
15
0.2 0.4 0.6 0.8 1.0
lambda
6 —— alph =0.025
alph = 0.05
alph = 0.075
5 V¥ Min. norm (unknown)
4
3
2
0.2 0.4 0.6 0.8 1.0
— n=250
a5 n =500
. n =600
¥ Min. norm (unknown)
4.0
35
3.0
25
2.0
0.2 0.4 0.6 0.8 1.0
lambda

5.0
4.5
4.0
o 35
<
B 3.01
2.5
— eps =0.01
201 eps = 0.05
eps = 0.1
15 ¥ Min. norm {unknown)
00 05 10 15 20
Normalized lambda
6!
51
o
41
<
5
a
=,
—— alph = 0.025
21 alph = 0.05
alph = 0.075
¥ Min. norm (unknown)

0o 02 04 06

— n =250
n =500
a5 n = 600
¥ Min. norm (unknown)
4.0
a
< 35
5
a
— 30
25
2.0

08 10 12

01 02 03 04 05 06 07 08
Normalized lambda

CEM

INSIGHT.DATA.CLARITY,

f

ENS

PSLx

14/17

|| A — Pl < [[Ay = Bl + | P = Pl < 61(A) + 02(N)

Illustration on synthetic data

Quality of clustering |[«—>||A; — Pi|| < |4 — Pi|| + | B — P|] < 51(N\) + d2(A

n = 500, P,

k — 5 N 5.0 5.0
’ — eps =0.01 *
) 45 eps = 0.05 a5 _ A O
_ O 108(7?,) eps =0.1 ;4-5 —_— n&ng
Oé b n) 4.0 W Min. norm (unknown) a0/ a
]. = = % 4.0
£ = O(—2) a 35 =351 =
log (n) < / < =
= = o
330 3.0)
= = o
2.5 2.5 <
— eps=0.01 30 — eps =0.01
2.0 2.0 eps = 0.05 = eps = 0.05
eps = 0.1 \'/ eps = 0.1
15 15 ¥ Min. norm (unknown) 25 ¥ Min. upper bound (unknown)
02 04 06 0.8 10 0.0 05 10 15 20 0.0 05 10 15 20
lambda Normalized lambda Normalized lambda
6 —— alph =0.025 61 6.0
alph = 0.05 _
alph = 0.075 o 35
5 V¥ Min. norm (unknown) 54 a
5 5.0
p— = a2
T4 %4l ¥4
< < =
= Py o 4.0
2 &l 5
=3 —3 . 35
<
—— alph = 0.025 E 30 —— alph = 0.025
5 5 alph = 0.05 =" alph = 0.05
alph = 0.075 25 alph = 0.075
¥ Min. norm (unknown) ‘—'—/ W Min. upper bound (unknown)
02 0.4 06 08 10 0o 0z 04 06 08 10 12 00 02 04 06 08 10 12
Innbacd~ Marmalizad lamhes Normalized lambda
— n=250 — n=250 48] — n=250
a5 n =500 n =500 n = 500
: n =600 45 n = 600 =46 n = 600
¥ Min. norm (unknown) ¥ Min. norm (unknown) . W Min. upper bound (unknown)
a
40 a 4.0 Faa
= = =
<35 <35 t42
5 5 o
2 2 5 4.0
~30 T30 N
T3s
@
2.5 25 2
— 36
2.0 2.0 3.4 - v
0.2 0.4 0.6 0.8 1.0 01 02 03 04 05 06 07 08 01 02 03 04 05 06 07 08
lambda Normalized lambda Normalized lambda
=) ﬂ
CIEM 4k PsLx 14/17

INSIGHT.DATA.CLARITY,

Illustration on synthetic data

Quality of clustering |[¢=>||A; — P;|| < |4 — Pi|| + || B — Pl| < 51(X\) + 52(N)
?

Illustration

on synthetic data

Quality of clustering

=24 — Pl < [[Ar = Bl + | P — Pl < 61(A) + 02(N)

?

[]
5.0
— eps =0.01 6 — alph = 0.025 —— n=250
45 eps = 0.05 alph = 0.05 45 n =500
eps = 0.1 alph = 0.075 n = 600
4.0 ¥ Min. norm (unknown) 5 ¥ Min. norm (unknown) ¥ Min. norm (unknown)
’ 4.0
= 3.5 f f
< L 4 ‘
< < < 3.5
= = o
330 3 3
2 =3 3.0
2.5
2.0 2 2.5
1.5) 2.0
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
lambda lambda lambda

CEM £k psLx 15/17

AAAAAAAAAAAAAAAAAA

Illustration on synthetic data

Quality of clustering |[¢=>||A; — P;|| < |4 — Pi|| + || B — Pl| < 51(X\) + 52(N)
?

o
5.0
— eps =0.01 6 —— alph = 0.025 —— n =250
45 eps = 0.05 alph = 0.05 45 =500
eps = 0.1 alph = 0.075 n =600
4.0 ¥ Min. norm (unknown) 5 ¥ Min. norm (unknown) ¥ Min. norm (unknown)
. 4.0
= 3.5 f f
< "4 ‘
< < < 3.5
= 7 — —
5 3.0 B 3
— =3 30
2.5
2.0 2 2.5
1.5) 2.0
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
lambda lambda lambda
1.0 |
1.0 &
0.94
0.9
0.81 0.8
E 0.81 5 E
©° © ©°
L= £ £07
207 205 E
e e e
0.6
T 06, B 3
g o4y E
Tos — eps =0.01 B — alph = 0.025 e — n =250
eps = 0.05 alph = 0.05 n =500
0.4 eps = 0.1 \ 0.2 alph = 0.075 0.4 n = 600
% Best clust. (unknown) % Best clust. (unknown) % Best clust. (unknown)
0.3 ¥ Min. norm (unknown) ¥ Min. norm (unknown) 0.3 ¥ Min. norm (unknown)
. 0.01
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
lambda lambda lambda
L= L 15/17

RESERCH UNNERSITY PARS

INSIGHT.DATA.CLARITY,

Illustration on synthetic data

Choice of forgetting factor, comparison with uniform average:

0y
0.9
%08 \
kel
£ \
'g 0.7
e
006/ —— eps =0.01
'g eps = 0.05
205 eps =0.1
% Best clust. (unknown)
0.41 V¥ Min. norm (unknown) \
@ Convex select.
03] ¢ 2-step select.
0.0 0.2 0.4 0.6 0.8 1.0

lambda

adjusted rand index

1.0
0.9
0.8+ 0.8
x
(3]
kel
£07
0.6 o
c
e
— alph =0.025 32 0.6
0.4 alph = 0.05 I
alph = 0.075 505
% Best clust. (unknown)
0.27 w Min. norm (unknown) 0.41
@ Convex select.
¢ 2-step select. 0.31
0.0+ i i . i i
0.2 0.4 0.6 0.8 1.0
lambda

CEM

INSIGHT.DATA.CLARITY,

/l%
— n=250
n =500
n = 600

Best clust. (unknown)
Min. norm (unknown)
Convex select.

2-step select.

04

g | psix

0.2

0.4 0.6 0.8 1.0
lambda

Illustration on synthetic data

Choice of forgetting factor, comparison with uniform average:

=
=)

o o
4] [{e]

x
(3]
kel
£
'g 0.7
e
® 0.6 —— eps =0.01
§ eps = 0.05
T 0.5 eps = 0.1
% Best clust. (unknown)
0.41 V¥ Min. norm (unknown) \
@ Convex select.
03] ¢ 2-step select.
0.0 0.2 0.4 0.6 0.8 1.0

lambda

adjusted rand index

1.0+

0.81

0.61

0.44

0.24

0.01

— alph =0.025

alph = 0.05

alph = 0.075

Best clust. (unknown)
Min. norm (unknown)
Convex select.
2-step select.

04

0.2 0.4 0.6 0.8
lambda

1.0

adjusted rand index

/l%
— n=250
n =500
n = 600

04

Best clust. (unknown)
Min. norm (unknown)
Convex select.

2-step select.

0.2

0.4 0.6 0.8 1.0
lambda

- Choice by « proxy » of P; often does not work... (tends to privilege low)\)

CEM £k psx

AAAAAAAAAAAAAAAAAA

Illustration on synthetic data

Choice of forgetting factor, comparison with uniform average:

0y
0.9
% 0.8
kel
k=
'g 0.7
e
E 0.6 — eps =0.01
'g eps = 0.05
205 eps =0.1
% Best clust. (unknown)
0.41 V¥ Min. norm (unknown) \
@ Convex select.
03] ¢ 2-step select.
0.0 0.2 0.4 0.6 0.8 1.0
lambda

1.0+

0.81

adjusted rand index

0.24

0.01

— alph =0.025
alph = 0.05
alph = 0.075

Best clust. (unknown)
Min. norm (unknown)
Convex select.

2-step select.

04

0.2 0.4 0.6

lambda

0.8

1.0

adjusted rand index

r
—
0.9 >
0.8
0.7
0.61 — n=250
n =500
0.5 n = 600
% Best clust. (unknown)
0.4 ¥ Min. norm (unknown)
@ Convex select.
0.31 ¢ 2-step select.
0.2 0.4 0.6 0.8 1.0

lambda

- Choice by « proxy » of P; often does not work... (tends to privilege low)\)

- Choice by « finite differences » is even better than the (unknown) best uniform average

CEM £k psx

AAAAAAAAAAAAAAAAAA

Main result

Choosing the forgetting factor

Experiments

POWOE

Conclusion (Bonus : GNN ?)

€EM £k PsLx

Conclusion, outlooks

Conclusion

- Improved Non-asymptotic guarantees for smoothed Spectral Clustering for Dynamic
Stochastic Block Model
- Non-asymptotic guarantees for the sparse case !!

- Efficient practical choice of forgetting factor
- Experiments show that it outperform uniform average

EEM 4k psLx

AAAAAAAAAAAAAAAAAA

Conclusion, outlooks

Conclusion

- Improved Non-asymptotic guarantees for smoothed Spectral Clustering for Dynamic

Stochastic Block Model
- Non-asymptotic guarantees for the sparse case !!

- Efficient practical choice of forgetting factor
- Experiments show that it outperform uniform average

Outlooks (many !)

- More justification for finite difference ?
- Laplacian ? (normalized, unnormalized...)
- Other use of Lei’s modified Bernstein inequality for Bernoulli matrices ?

EEM 4k psLx

AAAAAAAAAAAAAAAAAA

Conclusion, outlooks

Conclusion

- Improved Non-asymptotic guarantees for smoothed Spectral Clustering for Dynamic

Stochastic Block Model
- Non-asymptotic guarantees for the sparse case !!

- Efficient practical choice of forgetting factor
- Experiments show that it outperform uniform average

Outlooks (many !)

- More justification for finite difference ?
- Laplacian ? (normalized, unnormalized...)
- Other use of Lei’s modified Bernstein inequality for Bernoulli matrices ?

- Detectability threshold a /a statistical physic of the difficult model !!

a=0(1/n) Ja=0(1/n)
bone {6 = O(1/log(n)?) Todo: {5 = cte

EEM 4k psLx

AAAAAAAAAAAAAAAAAA

Bonus : Universal invariant and equivariant
Graph Neural Networks

N. Keriven?!, Gabriel Peyré!

lEcole Normale Supérieure, Paris

=12\
€EM £k PsLx

Universal Invariant and Equivariant GNN

Graph
W e R"™"™ PxW = P'WP

=12\
€EM £k PsLx

Universal Invariant and Equivariant GNN

Graph Higher-order tensor
W eR™"™ PxW := PTWP WeRY PxW :=..

EEM £k pPsLx

Universal Invariant and Equivariant GNN

Graph Higher-order tensor
W eR™"™ PxW := PTWP WeRY PxW :=..

Invariant functions (graph -> scalar)

FiRY SR F(PxW) = f(W)

EEM £k pPsLx

Universal Invariant and Equivariant GNN

Graph Higher-order tensor
WeRY™" PxW :=P WP WeRY PxW = ...
Invariant functions (graph -> scalar) Equivariant functions (graph -> graph)

FiRY SR F(PxW)=f(W) | f:RY S RY f(PxW)=Px f(W)

CEM £k psx

Universal Invariant and Equivariant GNN

Graph Higher-order tensor
WeRY™" PxW :=P WP WeRY PxW = ...
Invariant functions (graph -> scalar) Equivariant functions (graph -> graph)

FiRY SR F(PxW)=f(W) | f:RY S RY f(PxW)=Px f(W)

tayerahN: f(W) = Zle Isp (Es(W) + By)

CEM £k psx

Universal Invariant and Equivariant GNN

Graph Higher-order tensor
WeRY™" PxW :=P WP WeRY PxW = ...
Invariant functions (graph -> scalar) Equivariant functions (graph -> graph)

FiRY SR F(PxW)=f(W) | f:RY S RY f(PxW)=Px f(W)

tayerahN: f(W) = Zle Isp (EL’S(W) + By)

Linear equivariant

R’I’LXTL — Rﬂ,k

CEM £k psx

Universal Invariant and Equivariant GNN

Graph Higher-order tensor
WeRY™" PxW :=P WP WeRY PxW = ...
Invariant functions (graph -> scalar) Equivariant functions (graph -> graph)

FiRY SR F(PxW)=f(W) | f:RY S RY f(PxW)=Px f(W)

tayerahN: f(W) = Zle Isp (EL’S(W) + By)

Linear equivariant Equivariant bias

R?’LXTL — Rnk Rn

k

CEM £k psx

Universal Invariant and Equivariant GNN

Graph Higher-order tensor
WeRY™" PxW :=P WP WeRY PxW = ...
Invariant functions (graph -> scalar) Equivariant functions (graph -> graph)

FiRY SR F(PxW)=f(W) | f:RY S RY f(PxW)=Px f(W)

tayerahN: f(W) = Zle Isp(Es(W) + By)
— |

Linear invariant or equivariant Linear equivariant Equivariant bias

Rnk — R Rnk — Rn Ran — Rnk Rn

k

=12\
€EM £k PsLx

Universal Invariant and Equivariant GNN

Graph Higher-order tensor
WeRY™" PxW :=P WP WeRY PxW = ...
Invariant functions (graph -> scalar) Equivariant functions (graph -> graph)

FiRY SR F(PxW)=f(W) | f:RY S RY f(PxW)=Px f(W)

tayerahN: f(W) = ZS Lsp (Es(W) + By)
— |

S

Linear invariant or equivariant Linear equivariant Equivariant bias

R" — R R — R™ R7xn 5 R R™

k

Characterized by [Maron et al 2018]: basis does not depend on n !!

CEM £k psx

Universal Invariant and Equivariant GNN

Graph Higher-order tensor
WeRY™" PxW :=P WP WeRY PxW = ...
Invariant functions (graph -> scalar) Equivariant functions (graph -> graph)

FiRY SR F(PxW)=f(W) | f:RY S RY f(PxW)=Px f(W)

tayerahN: f(W) = Zle Isp(Es(W) + By)
— |

Linear invariant or equivariant Linear equivariant Equivariant bias

R" — R R — R™ R7xn 5 R R™

k

Characterized by [Maron et al 2018]: basis does not depend on n !!

Thm: GNNs are universal approximators of invariant (resp. equivariant) continuous functions.

=12\
€EM £k PsLx

Universal Invariant and Equivariant GNN

Graph Higher-order tensor
WeRY™" PxW :=P WP WeRY PxW = ...
Invariant functions (graph -> scalar) Equivariant functions (graph -> graph)

FiRY SR F(PxW)=f(W) | f:RY S RY f(PxW)=Px f(W)

tayerahN: f(W) = ZS Lsp (Es(W) + By)
— |

S

Linear invariant or equivariant Linear equivariant Equivariant bias

R" — R R — R™ R7xn 5 R R™

k

Characterized by [Maron et al 2018]: basis does not depend on n !!

Thm: GNNs are universal approximators of invariant (resp. equivariant) continuous functions.

- Invariant case: Stone-Weierstrass [Hornik1989], the separation of points is hard to prove !

CEM £k psLx

AAAAAAAAAAAAAAAA T

Universal Invariant and Equivariant GNN

Graph

W eRY™™ PxW := PTWP

Invariant functions (graph -> scalar)

FiRY SR F(PxW) = f(W)

tlayerahN: f(W) = >~

S

s=1

Linear invariant or equivariant

R™ R R s R®

Higher-order tensor

WeRY PxW =

oo e

Equivariant functions (graph -> graph)

FiRY S RY F(P+W) = Px f(W)

Isp (b:s(W) + B,)

Linear equivariant

R’I’LXTL — Rﬂ,k

Equivariant bias
k

Rn

Characterized by [Maron et al 2018]: basis does not depend on n !!

Thm: GNNs are universal approximators of invariant (resp. equivariant) continuous functions.

- Invariant case: Stone-Weierstrass [Hornik1989], the separation of points is hard to prove !
- Equivariant case: new S-W theorem ! (non-trivial adaptation of [Brosowski 1981])

CEM £k psLx

AAAAAAAAAAAAAAAAAA

Universal Invariant and Equivariant GNN

Graph Higher-order tensor
WeRY™" PxW :=P WP WeRY PxW = ...
Invariant functions (graph -> scalar) Equivariant functions (graph -> graph)

FiRY SR F(PxW)=f(W) | f:RY S RY f(PxW)=Px f(W)

tayerahN: f(W) = Zle Isp(Es(W) + By)
— |

Linear invariant or equivariant Linear equivariant

R?’Lk — R R?’Lk — R’n R?’LXTL — Rnk

Equivariant bias
k

Rn

Characterized by [Maron et al 2018]: basis does not depend on n !!

Thm: GNNs are universal approximators of invariant (resp. equivariant) continuous functions.

- Invariant case: Stone-Weierstrass [Hornik1989], the separation of points is h

ard to prove |

- Equivariant case: new S-W theorem ! (non-trivial adaptation of [Brosowski 1981])

- Case invariant already known [Maron 2019], high k is necessary !

CEM £k psLx

AAAAAAAAAAAAAAAAAA

Thank you !

Preprints are coming soon !

4 _ . N
data-ens.github.io
Enter the data challenges!
Come to the colloquium!
Come to the Laplace seminars!
\ Y Y

CEM £k psLx

AAAAAAAAAAAAAAAAAA

