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Cluster the nodes of a
graph using its structure.

Applicationin :
- Social network analysis
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- etc
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- Take W =<{D—-A
Id— D 1/2AD—1/2
- Computeitsk-SvD W = UAUT, U = U.1:k

0.1

- Cluster the rows of {/ with k-means
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- Many many (fast) variants... ©oom e e W W
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SBM : theoretical analysis

Stochastic Block Model (SBM)

Qg5 ™~ BGI‘(Bkg)
when ©;;, =1,0,, =1

0 € {0, 1}”XK: matrix of communities (only one 1 by row) [Of course : Bgr > By ]
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SBM : theoretical analysis

Stochastic Block Model (SBM)

Gy,;j ~ BGI‘(Bkg)
when ©;;, =1,0,, =1

0 € {0, 1}”XK: matrix of communities (only one 1 by row) [Of course : Bgr > By ]

Theoretical results (non-exhaustive...) Non-asymptotic analysis

Recently solved conjecture(s) [Lei 2015]
[Krzakala et al., Mossel et al, Massoulie et al...]

- Sparse SBM Bkk- — %7Bk€ — %

- Almost sparse: By ~ o, > loin

- When n — oo , detectability
threshold for any algorithm wrt a,b| | - Withproba 1 —n"":

1(6,0) < K]

~ NQp

- Case K > 3 still open...

L(©,0) = minp ||[OP — 0|
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Dynamic Spectral Clustering

Goal

Exploit past data to:

Track communities
Enforce smoothness/consistency

Improve result at time t
- Does not want to apply SC several
times !

Many approaches :

Incremental / hierarchical
Maximum Likelihood / Bayesian
Variational...

Simple(st): Smoothing of adjacency matrix + SC

- Uniform average ? [Pensky 2017]

1 i
At — let—’w Al
- May need to keep a lot of past data in
memory...
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Dynamic Spectral Clustering

Goal

Exploit past data to:

Track communities
Enforce smoothness/consistency

Improve result at time t
- Does not want to apply SC several
times !

Many approaches :

Incremental / hierarchical
Maximum Likelihood / Bayesian
Variational...

Simple(st): Smoothing of adjacency matrix + SC

- Uniform average ? [Pensky 2017]

1 i
At — let—’w Al
- May need to keep a lot of past data in
memory...

- Here : Exponential Smoothing [chi 2007, xu 2010...]
At — (]. - A)At_l + )\At

- More appropriate for online computing
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Dynamic Stochastic Block Model (SBM)
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Dynamic SBM

Dynamic Stochastic Block Model (SBM)

Hidden Markov Model (HMM)
- At each time step, each node change
community with proba &

PO, =105 ' =1)=1-¢
PO, =10, =1)=¢/(K — 1)
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Dynamic SBM

Dynamic Stochastic Block Model (SBM) )

e Markow Model (HAVI P(Ol, =110} =1)=1-¢

Hidden Markov Model (HMM t t—1 1\ B

- At each time step, each node change PO =110; =1)=¢/(K—1)
community with proba & (a;?j ~ Ber(B)

- Given cluster membership, SBM is generated

L
-

-

| when O =1,j¢ @EE =
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Dynamic SBM

L l

Ay Ao Ay

Dynamic Stochastic Block Model (SBM)

(

PO}, =105 =1)=1-¢

Hidden Markov Model (HMM) 9 . -1
- At each time step, each node change PO =118, =1) =¢/(K 1)
community with proba & (4t~ Ber(Bye)
- Given cluster membership, SBM is generated \ %quen Of —1.icOl —
- To simplify, connectivity matrix does not change 7 ik = 4] gt
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Dynamic SBM

Uniform Average [Pensky et al. 2017]
- Uniform smoothing A, = Zf o A
=t—w
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Dynamic SBM

Uniform Average [Pensky et al. 2017]

_ . . —_ L t
U.nlform smoothing o B A = Zl:t_w A
- Simpler model, deterministic communities
- atmost s nodes change between time steps | Asymptotically better if:
Under same hypotheses, with optimal window size: s —of L — 0 1
n no, ) logn

L(6!,0!) < % min (1, \/sa,)

« The more people (in each group),
the less likely you are to change
communities... »
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Dynamic SBM

Uniform Average [Pensky et al. 2017]

- Uniform smoothing
- Simpler model, deterministic communities

- at most s nodes change between time steps

‘th — Z;:t—w Al

Under same hypotheses, with optimal window size:

L(6!,0!) < % min (1, \/sa,)

- Choice of window size problematic !
- May necessitate to keep every data in memory...

Asymptotically better if:

o) o s
n Ny, logn

« The more people (in each group),
the less likely you are to change
communities... »

)

- The method indicated in [Pensky2017] does not work in practice !
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Dynamic SBM

Uniform Average [Pensky et al. 2017]

) , : Tt
U.nlform smoothing o B A, = Zl:t_w A
- Simpler model, deterministic communities
- atmost s nodes change between time steps | Asymptotically better if:

Under same hypotheses, with optimal window size: s _ 0( 1 ) _ 0( 1 )
A 52 _ n noy, ) logn
L(©' e < oo nin (1, /sam)

« The more people (in each group),

the less likely you are to change
- Choice of window size problematic ! communities... »
- May necessitate to keep every data in memory...
- The method indicated in [Pensky2017] does not work in practice !

- How does the exponential model perform ? A; = (1 — A\)A;_1 + AA;

Q
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Dynamic SBM

Uniform Average [Pensky et al. 2017]
Uniform smoothing

Simpler model, deterministic communities

‘th — Z;:t—w Al

at most s nodes change between time steps

Under same hypotheses, with optimal window size:

L(6!,0!) < % min (1, \/sa,)

Q

Choice of window size problematic !

Asymptotically better if:

o) o s
n Ny, logn

« The more people (in each group),
the less likely you are to change
communities... »

)

May necessitate to keep every data in memory...

The method indicated in [Pensky2017] does not work in practice !

How does the exponential model perform ? 4; = (1 — A\)A; 1 + A,
Can we get the same / improve theoretical guarantees ? For HMM ?
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Dynamic SBM

Uniform Average [Pensky et al. 2017]
Uniform smoothing

Simpler model, deterministic communities

‘th — Z;:t—w Al

at most s nodes change between time steps

Under same hypotheses, with optimal window size:

L(6!,0!) < % min (1, \/sa,)

Q

Choice of window size problematic !

Asymptotically better if:

o) o s
n Ny, logn

« The more people (in each group),
the less likely you are to change
communities... »

)

May necessitate to keep every data in memory...

The method indicated in [Pensky2017] does not work in practice !

How does the exponential model perform ? 4; = (1 — A\)A; 1 + A,
Can we get the same / improve theoretical guarantees ? For HMM ?
Can we design an efficient way to select the forgetting factor ?
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POOE

Main result

Choosing the forgetting factor

Experiments

Conclusion (Bonus : GNN ?)
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CEM 4k psLx 6/17

AAAAAAAAAAAAAAAA



At:

(1-NA

Theorem:
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Theorem:

Assume t >t = %lgiég((l‘;?f_/i)))

Choose A = \* = O(min(1, /na,¢))

If [ Zn > log(n) J , with probability 1 —n~" on O, A :

A n

(to reduce effect of initialization)

~ 2N/
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A= (1-1)A

Theorem:

Assume t >ty = %Ié;gég??f_/ig) (to reduce effect of initialization)

Choose A = \* = O(min(1, /na,¢))

If [ QT” > @ J , with probability 1 —n~" on O, A :

- Same rate as [Pensky 2017] with € = s/n
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Theorem:

log(1/(1=X))

Choose A = \* = O(min(1, /na,¢))

A

If [ Zn > @ J , with probability 1 —n~" on O, A :

Assume t >t = % log(ann/A) (to reduce effect of initialization)

- Same rate as [Pensky 2017] with € = s/n

- Can handle the sparse case if € = O (W) (which was already assumed in [Pensky2017] !)
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- Same rate as [Pensky 2017] with € = s/n

- Can handle the sparse case if € = O (W) (which was already assumed in [Pensky2017] !)

}_1,5 = (1 — )\)}_1]5_1 + )\At — [ Your favorite (approx. ?) SC algo. ]

Theorem:

log(1/(1=X))

Choose A = \* = O(min(1, /na,¢))

A

If [ Zn > @ J , with probability 1 —n~" on O, A :

Assume t >t = % log(ann/A) (to reduce effect of initialization)

Can « zero-out » the elements of }It that are < (1 — \)'=i» to keep it « sparse »

~ 2N/
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Step 1 [Lei 2015] :
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Sketch of proof (1)

Step 1 [Lei 2015] :
- Define P} = @tB@tT (probability of connection between every two nodes)

- Apply perturbation theory (Davis-Kahan thm.) to show that for any matrix ¥
used for spectral clustering, A 2
L(©%0") < oz W - Bi?

Step 2 : bound Hz‘_lt — PtH

- [Lei 2015] : Ay — P|| < O(/nay,)

- [Pensky 2017]: || A, — Pi|| < O(\/nay, min(1, (a,s)**)) (for ideal window size)

- Us: |A; — P|| < O(y/nay, min(1, (na,e)'/4))  (for ideal X )
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How to bound ||A; — P;|| ?

- Decompose ||A: — Pi|| < |4t — Bi|| + ||P: — P:||  where B, = (1—\)P,_; + AP, = E(A4,)

Advanced matrix concentration inequality, Only depends on the Markov chain ©

similar to [Lei 2015] -
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How to bound ||A; — P;|| ?

- Decompose ||A: — Pi|| < |4t — Bi|| + ||P: — P:||  where B, = (1—\)P,_; + AP, = E(A4,)

Advanced matrix concentration inequality, Only depends on the Markov chain ©

similar to [Lei 2015] -
A 2 P, — B <d3(N) :=C /)
|4 — Pl < 81(N) := Civnap A [Pt — Pif| < d2(A) anam /5

w

(]

Spectral Norm

[fwhen)\\]

Spectral Norm
- [ ] w E= w

[\When)\\(]

0

0.0 0.2 0.4 0.6 0.8 1.0
lambda

0.0 0.2 0.4 0.6 0.8 1.0
lambda
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Sketch of proof (2)

How to bound ||A; — P;|| ?

- Decompose ||A: — Pi|| < |4t — Bi|| + ||P: — P:||  where B, = (1—\)P,_; + AP, = E(A4,)

Advanced matrix concentration inequality, Only depends on the Markov chain ©
similar to [Lei 2015] —
||Pt — Pt” S 62()\) = Ogn@n\/é

||At — pt” S 51(A) .= Ol\/ TLOdn)\

w

Spectral Norm

0

0.0 0.2 0.4 0.6 0.8 1.0
lambda

§5
[\When)\\(] %; [/‘When)\\(]
0.0 0.2 Cl'a4mb‘2:l5a 0.8 1.0
£\
X = argmin(8,(N) + 82(N) = CoCy e £
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Sketch of proof (3)

Lei’s concentration inequality for (sum of) Bernoulli matrices
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Lei’s concentration inequality for (sum of) Bernoulli matrices

- Step1:write ||A — P|| = max,csz' (A— P)x
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Sketch of proof (3)

Lei’s concentration inequality for (sum of) Bernoulli matrices

- Step1:write [|A— P|| = maxzesz' (A— P)r ~ max, yegz ' (A — P)y

-
=3

G : Appropriate grid

/A \//§ \; L0,
i)
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Sketch of proof (3)

Lei’s concentration inequality for (sum of) Bernoulli matrices

- Step1:write [|A— P|| = maxzesz' (A— P)r ~ max, yegz ' (A — P)y
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Sketch of proof (3)

Lei’s concentration inequality for (sum of) Bernoulli matrices

- Step1:write [|A— P|| = maxzesz' (A— P)r ~ max, yegz ' (A — P)y
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- Observation: ¥' (A — P)z =3, xiy;(ai; — pij) but directly applying Bernstein does not work !

- Step 2: decompose Zi,j x’iyj(a’ij o p’ij) - Zx@-yj small wiyj(a’ij o pij) + Z:ciyj large Lyl (aij o pij)

Bernstein ok

e *

—— |- Can bebounded uniformly forall z,y € G !
- Proof « specific » to Bernoulli matrices, not SBM
- Good chance that it could be further generalized
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Sketch of proof (3)

Lei’s concentration inequality for (sum of) Bernoulli matrices

- Step1:write [|A— P|| = maxzesz' (A— P)r ~ max, yegz ' (A — P)y
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G : Appropriate grid
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- Observation: ¥' (A — P)z =3, xiy;(ai; — pij) but directly applying Bernstein does not work !

- Step 2: decompose Zz’,j xiyj(a’ij o pij) - Zﬂ?iyj small wiyj(a’ij o pij) + Ziﬂiyj large Li¥Yj (aij o pij)

/ *
—— |- Can bebounded uniformly forall z,y € G !
Bernstein ok - Proof « specific » to Bernoulli matrices, not SBM

- Good chance that it could be further generalized
- Future work: other applications ?
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Grid of forgetting factors

How to choose )\ ?

- [Pensky 2017]: how to choose window size ?
- keep all data in memory (offline)
- choose window size a posteriori using Lepski’s method
- Does not work in practice ! (no numerics in [Pensky 2017])

- [Xu 2010]: perform a spectral clustering at each time step, choose an adaptive \;
- In our case, we do not want to perform SC at each time step !

Proposed : maintain online several A;()\;),...,A;(Ay) , choose only when SC desired.

- Possible to maintain strong smoothing (small forgetting
P factors) without additional computational load
- Does not necessitate access to raw past data
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Method 1 : Adaptation of Lepski’s method

Lemma
Assume that VAi — v/ Ai—1 <7 and @y, is known. Choose A; such that

Then with probability atleast 1 — Nn—",
1A,(N\:) = P|| < 66* + 5v\/nan,

4.0

O(6*) if 7= O((nane)'/*)
N = O((nape)~Y4)
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2.5 1

2.0 ~

Problem :
The theoretical expression for 6;(\) = CivnapA
is not tight | Unusable in practice....
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Here C1 = 0.5 for illustrative purpose, in
theory C; > 2892 | Many proof artifacts...
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- Estimate P, from Ay
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Method 2 : Proxy for P,

Goal: minimize ||f_1t()\i) — Pt| , but P; unknown.

Idea: Replace it with a proxy.

- Estimate P, from Ay
- (Spectral Clustering + maximum likelihood)

- Minimize ||/_1t()\z) - pt”

- Repeat with the new A;()\;) and iterate ?

Explanation ? The spectral norm may not be the best criterion !
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Method 2 : proxy for P

Method 2 : Proxy for P,

Goal: minimize ||f_1t()\i) — Pt| , but P; unknown.

Idea: Replace it with a proxy.

- Estimate P, from Ay
- (Spectral Clustering + maximum likelihood)

- Minimize ||/_1t()\z) - pt”

- Repeat with the new A;()\;) and iterate ?

1 i p) . . |
Usually diverge ! ® Explanation ? The spectral norm may not be the best criterion !
, 0,34: \ The first one is §o -
E 0.80 1 USUG//y Very gOOd ! E 0.7 ;Z; N
Eom (« 2-step » estimator) Y i )
=, 3 054 [ x
-g 0.76 _g N
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Method 3 : Derivative and finite differences ) //
Observation : the function (i) = [|[4:(A\;) — P%|| that we are trying to |
minimize looks convex...
% . \.\\ /_ .
Ai)—f (A= 2.\ /
Idea : minimize the derivative ? (still unknown 1) g(A\;) = LI ;\z_{f_z )l = M
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Method 3 : Derivative and finite differences ) /

Observation : the function f(Xi) = Hx"It()\i) — Pi|| that we are trying to
minimize looks convex...
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Method 3 : Derivative and finite differences ) /

Observation : the function f(Xi) = Hx"It()\i) — Pi|| that we are trying to
minimize looks convex...

_ S =f(Aia)]
Ai—Ai—1

Idea : minimize the derivative ? (still unknown !) g(/\z-)

Ai—Ai_1

aaaaaaa

Final procedure : minimize an upper bound [h(&) _ IIAt(Ai)—At(Ail)q wl ._

Lemma
NN € (A

Assume that whp f is strongly convex and 0 < ¢ < f” < Con an interval [A, X] ,and A — X =7~
Then, whp, we have

C
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|A:(\;) — P|| <20+ C (,Y 4 3Cy+49 /7)
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Observation : the function f(Ai) = Hx"It()\i) — P4|| that we are trying to
minimize looks convex... '
Idea : minimize the derivative ? (still unknown !) g(/\z-) = I Az—{g_l 1)
. - AN
Final procedure : minimize an upper bound [h()\z) — ||At()‘;)—;\4t()\i1)|} e
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Lemma
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Assume that whp f is strongly convex and 0 < ¢ < f” < Con an interval [A, X] ,and A — X =7~
Then, whp, we have
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Method 3 : Derivative and finite differences ) /

Observation : the function f(Xi) = Hx"It()\i) — Pi|| that we are trying to
minimize looks convex...

_ S =f(Aia)]
Ai—Ai—1

Idea : minimize the derivative ? (still unknown !) g(/\z-)

Ai—Ai_1

aaaaaaa

Final procedure : minimize an upper bound [h()\i) _ IIAt(/\i)—At(AH)q e —

Lemma
NN € (A

Assume that whp f is strongly convex and 0 < ¢ < f” < Con an interval [A, X] ,and A — X =7~
Then, whp, we have

C

_ s
|A:(\;) — P|| <20+ C (,y 4 3Cy+49 /7)

Gives the right rate if : v = @(m) c,C = O((ann)_1/48_3/4)

Future work: actually proving the convexity ?

For now: the upper bound (51(/\) + 09 (/\) has the right strong convexity on [CL/\*, b/\*]
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Illustration on synthetic data

Choice of forgetting factor, comparison with uniform average:
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adjusted rand index
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2-step select.
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0.2

0.4 0.6 0.8 1.0
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- Choice by « proxy » of P; often does not work... (tends to privilege low )\ )
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Illustration on synthetic data

Choice of forgetting factor, comparison with uniform average:

0y
0.9
% 0.8
kel
k=
'g 0.7
e
E 0.6 — eps =0.01
'g eps = 0.05
205 eps =0.1
% Best clust. (unknown)
0.41 V¥ Min. norm (unknown) \
@ Convex select.
03] ¢ 2-step select.
0.0 0.2 0.4 0.6 0.8 1.0
lambda

1.0+

0.81

adjusted rand index

0.24

0.01

— alph =0.025
alph = 0.05
alph = 0.075

Best clust. (unknown)
Min. norm (unknown)
Convex select.

2-step select.

*04*

0.2 0.4 0.6

lambda

0.8

1.0

adjusted rand index

r
—
0.9 >
0.8
0.7
0.61 — n=250
n =500
0.5 n = 600
% Best clust. (unknown)
0.4 ¥ Min. norm (unknown)
@ Convex select.
0.31 ¢ 2-step select.
0.2 0.4 0.6 0.8 1.0

lambda

- Choice by « proxy » of P; often does not work... (tends to privilege low )\ )

- Choice by « finite differences » is even better than the (unknown) best uniform average
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Main result

Choosing the forgetting factor

Experiments

POWOE

Conclusion (Bonus : GNN ?)
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Conclusion, outlooks

Conclusion

- Improved Non-asymptotic guarantees for smoothed Spectral Clustering for Dynamic
Stochastic Block Model
- Non-asymptotic guarantees for the sparse case !!

- Efficient practical choice of forgetting factor
- Experiments show that it outperform uniform average
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Conclusion, outlooks

Conclusion

- Improved Non-asymptotic guarantees for smoothed Spectral Clustering for Dynamic

Stochastic Block Model
- Non-asymptotic guarantees for the sparse case !!

- Efficient practical choice of forgetting factor
- Experiments show that it outperform uniform average

Outlooks (many !)

- More justification for finite difference ?
- Laplacian ? (normalized, unnormalized...)
- Other use of Lei’s modified Bernstein inequality for Bernoulli matrices ?

- Detectability threshold a /a statistical physic of the difficult model !!

a=0(1/n) Ja=0(1/n)
bone {6 = O(1/log(n)?) Todo: {5 = cte
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Bonus : Universal invariant and equivariant
Graph Neural Networks

N. Keriven?!, Gabriel Peyré!

lEcole Normale Supérieure, Paris
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Universal Invariant and Equivariant GNN

Graph
W e R"™"™ PxW = P'WP
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Universal Invariant and Equivariant GNN

Graph Higher-order tensor
WeRY™" PxW :=P WP WeRY PxW = ...
Invariant functions (graph -> scalar) Equivariant functions (graph -> graph)

FiRY SR F(PxW)=f(W) | f:RY S RY f(PxW)=Px f(W)

tayerahN:  f(W) = Zle Isp(Es(W) + By)
— |

Linear invariant or equivariant Linear equivariant Equivariant bias

Rnk — R Rnk — Rn Ran — Rnk Rn

k
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Universal Invariant and Equivariant GNN

Graph Higher-order tensor
WeRY™" PxW :=P WP WeRY PxW = ...
Invariant functions (graph -> scalar) Equivariant functions (graph -> graph)

FiRY SR F(PxW)=f(W) | f:RY S RY f(PxW)=Px f(W)
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Characterized by [Maron et al 2018]: basis does not depend on n !!
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Universal Invariant and Equivariant GNN

Graph Higher-order tensor
WeRY™" PxW :=P WP WeRY PxW = ...
Invariant functions (graph -> scalar) Equivariant functions (graph -> graph)

FiRY SR F(PxW)=f(W) | f:RY S RY f(PxW)=Px f(W)

tayerahN:  f(W) = ZS Lsp (Es(W) + By)
— |

S

Linear invariant or equivariant Linear equivariant Equivariant bias

R" — R R — R™ R7xn 5 R R™

k

Characterized by [Maron et al 2018]: basis does not depend on n !!

Thm: GNNs are universal approximators of invariant (resp. equivariant) continuous functions.

- Invariant case: Stone-Weierstrass [Hornik1989], the separation of points is hard to prove !
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Universal Invariant and Equivariant GNN

Graph

W eRY™™ PxW := PTWP

Invariant functions (graph -> scalar)

FiRY SR F(PxW) = f(W)

tlayerahN:  f(W) = >~

S

s=1

Linear invariant or equivariant

R™ R R s R®

Higher-order tensor

WeRY PxW =

oo e

Equivariant functions (graph -> graph)

FiRY S RY F(P+W) = Px f(W)

Isp (b:s(W) + B,)

Linear equivariant

R’I’LXTL — Rﬂ,k

Equivariant bias
k

Rn

Characterized by [Maron et al 2018]: basis does not depend on n !!

Thm: GNNs are universal approximators of invariant (resp. equivariant) continuous functions.

- Invariant case: Stone-Weierstrass [Hornik1989], the separation of points is hard to prove !
- Equivariant case: new S-W theorem ! (non-trivial adaptation of [Brosowski 1981])
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Universal Invariant and Equivariant GNN

Graph Higher-order tensor
WeRY™" PxW :=P WP WeRY PxW = ...
Invariant functions (graph -> scalar) Equivariant functions (graph -> graph)

FiRY SR F(PxW)=f(W) | f:RY S RY f(PxW)=Px f(W)

tayerahN:  f(W) = Zle Isp(Es(W) + By)
— |

Linear invariant or equivariant Linear equivariant

R?’Lk — R R?’Lk — R’n R?’LXTL — Rnk

Equivariant bias
k

Rn

Characterized by [Maron et al 2018]: basis does not depend on n !!

Thm: GNNs are universal approximators of invariant (resp. equivariant) continuous functions.

- Invariant case: Stone-Weierstrass [Hornik1989], the separation of points is h

ard to prove |

- Equivariant case: new S-W theorem ! (non-trivial adaptation of [Brosowski 1981])

- Case invariant already known [Maron 2019], high k is necessary !
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Thank you !

Preprints are coming soon !

4 _ . N
data-ens.github.io
Enter the data challenges!
Come to the colloquium!
Come to the Laplace seminars!
\ Y Y
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