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- Many many (fast) variants…
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Dynamic SBM

Hidden Markov Model (HMM)
- At each time step, each node change 

community with proba
- Given cluster membership, SBM is generated
- To simplify, connectivity matrix does not change

Dynamic Stochastic Block Model (SBM)

…
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- May necessitate to keep every data in memory…
- The method indicated in [Pensky2017] does not work in practice !

Asymptotically better if:

« The more people (in each group), 
the less likely you are to change 
communities… »

Under same hypotheses, with optimal window size:

- How does the exponential model perform ?
- Can we get the same / improve theoretical guarantees ? For HMM ?
- Can we design an efficient way to select the forgetting factor ?

Q
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Assume                                                          (to reduce effect of initialization)

Choose

If                                          , with probability                     on             :

Result

- Same rate as [Pensky 2017] with

- Can handle the sparse case if                                   (which was already assumed in [Pensky2017] !)

- Can « zero-out » the elements of           that are                           , to keep it « sparse »

Your favorite (approx. ?) SC algo.

6/17
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- Observation:                                                                 but directly applying Bernstein does not work !

- Step 2: decompose

Sketch of proof (3)

: Appropriate grid

Bernstein ok
- Can be bounded uniformly for all                   !
- Proof « specific » to Bernoulli matrices, not SBM

- Good chance that it could be further generalized

- Future work: other applications ?
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- [Pensky 2017]: how to choose window size ?
- keep all data in memory (offline)
- choose window size a posteriori using Lepski’s method

- Does not work in practice ! (no numerics in [Pensky 2017])

- [Xu 2010]: perform a spectral clustering at each time step, choose an adaptive
- In our case, we do not want to perform SC at each time step !

How to choose ?

- Possible to maintain strong smoothing (small forgetting
factors) without additional computational load

- Does not necessitate access to raw past data
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Method 1 : Lepski

Method 1 : Adaptation of Lepski’s method
Lemma
Assume that                                     and       is known. Choose       such that

Then with probability at least                     , 

Problem :
The theoretical expression for                              
is not tight ! Unusable in practice….

if

Here for illustrative purpose, in 
theory ! Many proof artifacts…

11/17



Method 2 : proxy for P

Method 2 : Proxy for 

Goal: minimize , but         unknown.

12/17



Method 2 : proxy for P

Method 2 : Proxy for 

Goal: minimize , but         unknown.

Idea: Replace it with a proxy.

12/17



Method 2 : proxy for P

Method 2 : Proxy for 

Goal: minimize , but         unknown.

Idea: Replace it with a proxy.

- Estimate         from          
- (Spectral Clustering + maximum likelihood)

12/17



Method 2 : proxy for P

Method 2 : Proxy for 

Goal: minimize , but         unknown.

Idea: Replace it with a proxy.

- Estimate         from          
- (Spectral Clustering + maximum likelihood)

- Minimize

12/17



Method 2 : proxy for P

Method 2 : Proxy for 

Goal: minimize , but         unknown.

Idea: Replace it with a proxy.

- Estimate         from          
- (Spectral Clustering + maximum likelihood)

- Minimize

- Repeat with the new                and iterate ?

12/17



Method 2 : proxy for P

Method 2 : Proxy for 

Goal: minimize , but         unknown.

Idea: Replace it with a proxy.

- Estimate         from          
- (Spectral Clustering + maximum likelihood)

- Minimize

- Repeat with the new                and iterate ?

Usually diverge ! 

12/17



Method 2 : proxy for P

Method 2 : Proxy for 

Goal: minimize , but         unknown.

Idea: Replace it with a proxy.

- Estimate         from          
- (Spectral Clustering + maximum likelihood)

- Minimize

- Repeat with the new                and iterate ?

Usually diverge !  Explanation ? The spectral norm may not be the best criterion !

12/17



Method 2 : proxy for P

Method 2 : Proxy for 

Goal: minimize , but         unknown.

Idea: Replace it with a proxy.

- Estimate         from          
- (Spectral Clustering + maximum likelihood)

- Minimize

- Repeat with the new                and iterate ?

Usually diverge ! 

The first one is
usually very good ! 
(« 2-step » estimator)

Explanation ? The spectral norm may not be the best criterion !
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Observation : the function that we are trying to 
minimize looks convex…

Idea : minimize the derivative ? (still unknown !)

Final procedure : minimize an upper bound

Lemma

Assume that whp is strongly convex and                                 on an interval , and                            
Then, whp, we have

Gives the right rate if :

Future work: actually proving the convexity ?

For now: the upper bound has the right strong convexity on                           …
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Illustration on synthetic data

Choice of forgetting factor, comparison with uniform average:

- Choice by « proxy » of        often does not work… (tends to privilege low       )

- Choice by « finite differences » is even better than the (unknown) best uniform average
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Outlooks (many !)

- More justification for finite difference ?
- Laplacian ? (normalized, unnormalized…)
- Other use of Lei’s modified Bernstein inequality for Bernoulli matrices ?

- Detectability threshold à la statistical physic of the difficult model !!

Conclusion, outlooks

Conclusion

- Improved Non-asymptotic guarantees for smoothed Spectral Clustering for Dynamic
Stochastic Block Model

- Non-asymptotic guarantees for the sparse case !!

- Efficient practical choice of forgetting factor
- Experiments show that it outperform uniform average

Done Todo:
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Universal Invariant and Equivariant GNN

Graph Higher-order tensor

Invariant functions (graph -> scalar) Equivariant functions (graph -> graph)

Linear equivariantLinear invariant or equivariant

1-layer GNN:

Equivariant bias

Thm: GNNs are universal approximators of invariant (resp. equivariant) continuous functions.

- Invariant case: Stone-Weierstrass [Hornik1989], the separation of points is hard to prove !
- Equivariant case: new S-W theorem ! (non-trivial adaptation of [Brosowski 1981])

- Case invariant already known [Maron 2019], high       is necessary !

Characterized by [Maron et al 2018]: basis does not depend on n !!



Thank you !

Preprints are coming soon !

data-ens.github.io
Enter the data challenges!
Come to the colloquium!
Come to the Laplace seminars!


