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Deep NN

Theory ?
- Approximation theory

- Universal Approximation Theorem [Hornik 1989, Cybenko 1989, Pinkus 1999…]

- Approximation rate / smoothness space [Cohen, Kutyniok, Gribonval…]

- Generalisation / Sample complexity [Barnett, Arora, Neyshabur…]

- Optimisation / Regularization [Du, Lee, Bach, Jordan, Montanari…]
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In this talk: Universal Approximation Theorem
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A zoology of Graph NN

Review papers :

- Bronstein et al (2017) : Geometric Deep Learning: Going beyond Euclidean data
- Hamilton et al (2017) : Representation learning on graphs: Methods and applications
- Wu et al (2019) : A Comprehensive Survey on Graph Neural Networks

- Convolutional GNN : takes inspiration from Convolutional NN

- Spectral : convolution in Fourier domain (successive filtering using graph Laplacian)

- Spatial : « convolution » in graph domain

- Recursive GNN : defined as equilibrium state (inspired by physics, message-passing algorithms…)

- Dynamic GNN : temporal graphs, use random walks…
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Weight matrix

Multi-graph

Permutation of nodes

For                       , denote perm. of nodes

Ex:                  for          

A minima, a GNN is
invariant or equivariant by 
permutation of nodes

Invariant

Equivariant

Idea : alternate linear equivariant layers with non-linearities, invariant/equivariant last layer

Thm (Maron et al. 2018):

There is a basis of                   possible equivariant linear operators .
(idem for invariant)

Does not depend on       !!     Ex: there are only 15 equivariant linear operators
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Universality for Invariant NN

One-layer: Can increase the order of the tensor !

Thm (Maron et al. 2019):

When , can approximate any continuous invariant function.

Proof: uses invariant polynomials, density of polynomials, and classical universality theorem.

First contribution / warm-up :

- Alternative proof based on Stone-Weierstrass (SW) theorem.

- With a single set of parameters, can approximate a function defined on graphs of varying
size (continuous for the edit distance)
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Our proof : SW theorem for graphs
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« Any two graphs that yield the same
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(defined on graphs of varying size                      )

Main contribution:

Proof : « equivariant » polynomial ?               Stone-Weierstrass theorem ?

Thm (SW for equivariant functions)
(Keriven, Peyré 2019)

An algebra of equivariant functions (for 
coordinate-wise product) that separates points 
and separates coordinates is dense in the space
of equivariant continuous functions.

- Proof : non-trivial modif. from 
Brosowski et al. « An elementary proof of 
Stone-Weierstrass theorem » (1981)

- Not valid for output

- Not valid for subgroups of

« Any two coordinates not related by an automorphism can be separated by a function »
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Take-home msg: GNNs are still in their infancy, both theoretically and in practice. Scalability
and stability remain challenging. Many opportunities !



Thank you !

Keriven, Peyré. Universal Invariant and Equivariant Graph Neural Networks 
NeurIPS 2019, arxiv:1905.04943

More at nkeriven.github.io


