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Feature maps

« Alternate linearities
and non-linearities »
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« Alternate linearities
and non-linearities »
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State-of-the-art in: most everything ? (with sufficient data and domain knowledge...) ow
B N

- Computer vision |

- Speech recognition

- Natural Language Processing (NLP) T e

- Recommender systems ST DO Many specialized

- Reinforcement learning (sequential learning) architectures for each

- Etc etc etc. application
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Feature maps

f.maps
f.maps

Theory ?

« Alternate linearities
and non-linearities »

Convolutions Subsampling Convolutions Subsampling Fully connected

State-of-the-art in: most everything ? (with sufficient data and domain knowledge...) ow
- —
Computer vision
Speech recognition
Natural Language Processing (NLP) T e
Recommender systems ST DO Many specialized
Reinforcement learning (sequential learning) architectures for each

Etc etc etc. application

°)

Approximation theory
- Universal Approximation Theorem [Hornik 1989, Cybenko 1989, Pinkus 1999...]
- Approximation rate / smoothness space [Cohen, Kutyniok, Gribonval...]
Generalisation / Sample complexity [Barnett, Arora, Neyshabur...]

Optimisation / Regularization [Du, Lee, Bach, Jordan, Montanari...]
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Graph NN

Adapting DNN to graph inputs...
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Graph classification, node classification, link
prediction...
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Graph NN

Adapting DNN to graph inputs...

Structure <

Graph classification, node classification, link
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Text-based
Program

- Computer vision: scene generation, point
cloud classification, action recognition... %
- NLP: text classification (semantic graph)
- Chemistry: infer molecular properties, protein
structure, synthetize new compound...
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Graph NN

Adapting DNN to graph inputs...
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Sequence Structure ¢

Graph classification, node classification, link toe

prediction... (T T e )

- Computer vision: scene generation, point Frosram | ¢ i
cloud classification, action recognition... R !

- NLP: text classification (semantic graph)

- Chemistry: infer molecular properties, protein - & keyword usage (2020 - 2019)
structure, synthetize new compound... optimization

neural network
generative models
unsupervised learning
reinforcement learnin
= convolutional neural networ
‘5 recurrent neural network
machine learning
E multitask learnin
© neural architecture searc
- representation learning
adversarial robustness
robustness

Theory ? Most of it missing... =) = selsupervised Jeaniiyg E

State-of-the-art: kinda (less clear) =

nip
transformer

I graph neural netm;Joflzl

-4 =3 -2 -1 0 1 2
% usage
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Graph NN

Adapting DNN to graph inputs...

Graph classification, node classification, link toe

prediction... (T s )

- Computer vision: scene generation, point Frosram | ¢ ;
cloud classification, action recognition... SIS ’

- NLP: text classification (semantic graph)

- Chemistry: infer molecular properties, protein — & keyword usage (2020 - 2019)
structure, synthetize new compound... optimization

neural network

generative models

unsupervised learning
reinforcement learnin
= convolutional neural networ

‘5 recurrent ne}lll_ral lnetwc.)rk

. L: machine learning
State-of-the-art: kinda (less clear) = 3 mujtitask learnin
{ © neural architecture searc

- representation learning

adversarial robustness

= _ robustness
selfsupervised learnin

U Ifsup dl g

Theory ? Most of it missing... ) = o g E

I graph neural netm;Joflzl

-4 -3 -2 -1 0 1 2

[ In this talk: Universal Approximation Theorem } % usage
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A zoology of Graph NN

- Convolutional GNN : takes inspiration from Convolutional NN
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A zoology of Graph NN

- Convolutional GNN : takes inspiration from Convolutional NN

- Spectral : convolution in Fourier domain (successive filtering using graph Laplacian)
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- Spatial : « convolution » in graph domain
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A zoology of Graph NN

- Convolutional GNN : takes inspiration from Convolutional NN

- Spectral : convolution in Fourier domain (successive filtering using graph Laplacian)
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- Spatial : « convolution » in graph domain
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- Recursive GNN : defined as equilibrium state (inspired by physics, message-passing algorithms...)
- Dynamic GNN : temporal graphs, use random walks...

- Graph Auto Encoders : graph embedding, graph generation...
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A zoology of Graph NN

- Convolutional GNN : takes inspiration from Convolutional NN

- Spectral : convolution in Fourier domain (successive filtering using graph Laplacian)
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- Spatial : « convolution » in graph domain
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- Recursive GNN : defined as equilibrium state (inspired by physics, message-passing algorithms...)
- Dynamic GNN : temporal graphs, use random walks...

- Graph Auto Encoders : graph embedding, graph generation...

Review papers :

- Bronstein et al (2017) : Geometric Deep Learning: Going beyond Euclidean data
- Hamilton et al (2017) : Representation learning on graphs: Methods and applications
- Wuetal (2019) : A Comprehensive Survey on Graph Neural Networks
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A simple architecture: Invariant and Equivariant layers

Input
Weight matrix |}/ € R™**"

¢
Multi-graph W € R"™
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Input
Weight matrix |}/ € R™**"

¢
Multi-graph W € R"™

A minima, a GNN is )
invariant or equivariant by 3% :’:&.\
permutation of nodes "
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A simple architecture: Invariant and Equivariant layers

Input Permutation of nodes
Weight matrix |/ ¢ R™*" For 0 € X, ,denote g x VW perm. of nodes
¢
Multi-graph W € R™ Ex: P,WP) for ¢ =2

A minima, a GNN is )
invariant or equivariant by 3% :‘,&.\
permutation of nodes J.\*'ﬁ
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A simple architecture: Invariant and Equivariant layers

Input Permutation of nodes
Weight matrix |/ ¢ R™*" For 0 € 2, ,denote g x W perm. of nodes
¢
Multi-graph W € R™ Ex: P,WP) for ¢ =2
A minima, a GNN is _ k=6 Invariant
invariant or equivariant by a5 :”:&.\ / floxW) = f(W)
permutation of nodes "k*‘%
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A simple architecture: Invariant and Equivariant layers

Input Permutation of nodes
Weight matrix |/ ¢ R™*" For 0 € X, ,denote g x VW perm. of nodes
¢
Multi-graph W € R™ Ex: P,WP) for ¢ =2
A minima, a GNN is _ k=6 Invariant
invariant or equivariant by % ﬁ%\? / . floxW) = f(W)

permutation of nodes ,\&% S~ &'\g Equivariant
e *%' floxW)=0x f(W)
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A simple architecture: Invariant and Equivariant layers

Input Permutation of nodes
Weight matrix |/ ¢ R™*" For 0 € X, ,denote g x VW perm. of nodes
¢
Multi-graph W € R™ Ex: P,WP) for ¢ =2
A minima, a GNN is k=6 Invariant
invariant or equivariant by q,,. ~’*§f / ] floxW) = f(W)

permutation of nodes M % \ : %y\& Equivariant
*%' flox W) =0ox f(W)

Idea : alternate linear equivariant layers with non-linearities, invariant/equivariant last layer
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A simple architecture: Invariant and Equivariant layers

Input Permutation of nodes
Weight matrix |/ ¢ R™*" For 0 € X, ,denote g x VW perm. of nodes
¢
Multi-graph W € R™ Ex: P,WP) for ¢ =2

A minima, a GNN is k=6 Invariant

invariant or equivariant by q,,. ~’*§f / ] floxW) = f(W)
permutation of nodes M % ~_ ¥ ‘&\.@' Equivariant
e o quivarian
*%' flox W) =0ox f(W)

Idea : alternate linear equivariant layers with non-linearities, invariant/equivariant last layer

Thm (Maron et al. 2018): Bell number

k £
There is a basis of b(k + ¢) possible equivariant linear operators F' : R* — R"
(idem for invariant)
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A simple architecture: Invariant and Equivariant layers

Input Permutation of nodes
Weight matrix |/ ¢ R™*" For 0 € X, ,denote g x VW perm. of nodes
¢
Multi-graph W € R™ Ex: P,WP) for ¢ =2

A minima, a GNN is k=6 Invariant

invariant or equivariant by q,,. ~’*§f / ] floxW) = f(W)
permutation of nodes w % \ % &&\.@' Eauivariant

4 A quivarian

*%' floxW)=0cx f(W)

Idea : alternate linear equivariant layers with non-linearities, invariant/equivariant last layer

Thm (Maron et al. 2018): Bell number

k £
There is a basis of b(k + ¢) possible equivariant linear operators F' : R* — R"
(idem for invariant)

Does not depend on 72 !!  Ex: there are only 15 equivariant linear operators R™*™ — R"*"
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Universality for Invariant NN

One-layer: f(W) =>_, Hip(FsW + B;) / Can increase the order of the tensor !

p(-+Bi)f—

kq Y Rn}cl

Fl R mn

— F2 ]Rnkg 4 RRJ‘Q
d (/

L Fs ;
|G+ Bs)
Rn. S 4 Rn 5

yeR (invariant)
y € R"  (equivariant)
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Universality for Invariant NN

One-layer: f(W) =>_, Hip(FsW + B;) / Can increase the order of the tensor !
. pl-+B1)[ & Number of parameters depends on kg
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Fy 1 but not
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Universality for Invariant NN

One-layer: f(W) =>_, Hip(FsW + B;) / Can increase the order of the tensor !
. pl-+B1)[ & Number of parameters depends on kg
R™ B R™ ‘1 H
Fy 1 but not

— F2 ]Rnkg 4 RRJ‘Q
d (/

L Fs ;
|G+ Bs)
Rn. S 4 Rn 5

Thm (Maron et al. 2019):
When S, ks — 00, can approximate any continuous invariant function.

yeR (invariant)
y € R"  (equivariant)

Proof: uses invariant polynomials, density of polynomials, and classical universality theorem.

gipsa-lab



Universality for Invariant NN
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Thm (Maron et al. 2019):
When S, ks — 00, can approximate any continuous invariant function.

yeR (invariant)
y € R"  (equivariant)

Proof: uses invariant polynomials, density of polynomials, and classical universality theorem.

First contribution / warm-up :
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Universality for Invariant NN

One-layer: f(W) =>_, Hip(FsW + B;) / Can increase the order of the tensor !
. pl-+B1)[ & Number of parameters depends on kg
R™ B R™ ‘1 H
Fy 1 but not

— FQ Rnkg - Rn}cg
d (/

L Fs ;
|G+ Bs)
Rn. S 4 Rn 5

Thm (Maron et al. 2019):
When S, ks — 00, can approximate any continuous invariant function.

yeR (invariant)
y € R"  (equivariant)

Proof: uses invariant polynomials, density of polynomials, and classical universality theorem.
First contribution / warm-up :

- Alternative proof based on Stone-Weierstrass (SW) theorem.
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Universality for Invariant NN

One-layer: f(W) =>_, Hip(FsW + B;) / Can increase the order of the tensor !
. pl-+B1)[ & Number of parameters depends on kg
R™ B R™ ‘1 H
Fy 1 but not

— FQ ko

d 4/ -

R s z
|G+ Bs)
Rn. S 4 Rn 5

yeR (invariant)
y € R™  (equivariant)

Thm (Maron et al. 2019):
When S, ks — 00, can approximate any continuous invariant function.

Proof: uses invariant polynomials, density of polynomials, and classical universality theorem.

First contribution / warm-up :

- Alternative proof based on Stone-Weierstrass (SW) theorem.

- With a single set of parameters, can approximate a function defined on graphs of varying
size n < nyax (continuous for the edit distance)
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Our proof : SW theorem for graphs

Apply Stone-Weierstrass theorem in the space of graphs quotiented by permutations.

Thm (Stone-Weierstrass)

On a compact space, an algebra of continuous real-valued functions that
separates points is dense in the space of continuous functions.
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Our proof : SW theorem for graphs

Apply Stone-Weierstrass theorem in the space of graphs quotiented by permutations.

Thm (Stone-Weierstrass)

On a compact space, an algebra of continuous real-valued functions that
separates points is dense infthe space of continuous functions.

v

Must authorize product of NNs...
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Our proof : SW theorem for graphs

Apply Stone-Weierstrass theorem in the space of graphs quotiented by permutations.

Thm (Stone-Weierstrass)

On a compact space, an algebra of continuous real-valued functions that
separates points is dense infthe space of continuous functions.

v

Must authorize product of NNs...
Use the « cos trick » [Hornik 1989]

- Do the proof with p = cos

- A product of cos is also a sum

- Approximate cos with any p
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Our proof : SW theorem for graphs

Apply Stone-Weierstrass theorem in the space of graphs quotiented by permutations.

Thm (Stone-Weierstrass)

On a compact space, an algebra of continuous real-valued functions that

separates pointwe space of continuous functions.

v T——
Must authorize product of NNs...

« For any two distinct points, there is a

_ function that distinguishes them »
Use the « cos trick » [Hornik 1989]

- Do the proof with p = cos
- A product of cos is also a sum

- Approximate cos with any p
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Our proof : SW theorem for graphs

Apply Stone-Weierstrass theorem in the space of graphs quotiented by permutations.

Thm (Stone-Weierstrass)

On a compact space, an algebra of continuous real-valued functions that

separates pointwe space of continuous functions.

v T——
Must authorize product of NNs...

« For any two distinct points, there is a

_ function that distinguishes them »
Use the « cos trick » [Hornik 1989]

- Do the proof with p = cos « For any two non-isomorphic graphs,

there is a NN that distinguishes them »
- A product of cos is also a sum

- Approximate cos with any p
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Our proof : SW theorem for graphs

Apply Stone-Weierstrass theorem in the space of graphs quotiented by permutations.

Thm (Stone-Weierstrass)

On a compact space, an algebra of continuous real-valued functions that

separates pointwe space of continuous functions.

v T——
Must authorize product of NNs...

« For any two distinct points, there is a

_ function that distinguishes them »
Use the « cos trick » [Hornik 1989]

- Do the proof with p = cos « For any two non-isomorphic graphs,
there is a NN that distinguishes them »
- A product of cos is also a sum
« Any two graphs that yield the same

- Approximate cos with any p result for all NNs are isomorphic »
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Our proof : SW theorem for graphs

Apply Stone-Weierstrass theorem in the space of graphs quotiented by permutations.

Thm (Stone-Weierstrass)

On a compact space, an algebra of continuous real-valued functions that

separates pointwe space of continuous functions.

v T——
Must authorize product of NNs...

« For any two distinct points, there is a

_ function that distinguishes them »
Use the « cos trick » [Hornik 1989]

- Do the proof with p = cos « For any two non-isomorphic graphs,

there is a NN that distinguishes them »
- A product of cos is also a sum

« Any two graphs that yield the same

- Approximate cos with any p result for all NNs are isomorphic »

(core of the proof)
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Universality for Equivariant NN

Main contribution:

Thm (Keriven, Peyré 2019):

d
One layer equivariant GNNs [R™ — IR™ are dense in the space of
continuous equivariant functions.

(defined on graphs of varying size n < Nmax )
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Main contribution:

Thm (Keriven, Peyré 2019):
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One layer equivariant GNNs [R™ — IR™ are dense in the space of
continuous equivariant functions.

(defined on graphs of varying size n < Nmax )

Proof : « equivariant » polynomial ? >< Stone-Weierstrass theorem ? >< =
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Universality for Equivariant NN

Main contribution:

Thm (Keriven, Peyré 2019):

d
One layer equivariant GNNs [R™ — IR™ are dense in the space of
continuous equivariant functions.

(defined on graphs of varying size n < Nmax )

Proof : « equivariant » polynomial ? >< Stone-Weierstrass theorem ? >< —

Thm (SW for equivariant functions)
(Keriven, Peyré 2019)

An algebra of equivariant functions (for
coordinate-wise product) that separates points
and separates coordinates is dense in the space
of equivariant continuous functions.
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Universality for Equivariant NN

Main contribution:

Thm (Keriven, Peyré 2019):

d
One layer equivariant GNNs [R™ — IR™ are dense in the space of
continuous equivariant functions.

(defined on graphs of varying size n < Nmax )

Proof : « equivariant » polynomial ? >< Stone-Weierstrass theorem ? ><

Thm (SW for equivariant functions)
(Keriven, Peyré 2019)

An algebra of equivariant functions (for
coordinate-wise product) that separates points
and separates coordinates is dense in the space
of equivariant|continuous functions.

v

« Any two coordinates not related by an automorphism can be separated by a function »
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Universality for Equivariant NN

Main contribution:

Thm (Keriven, Peyré 2019):

d
One layer equivariant GNNs [R™ — IR™ are dense in the space of
continuous equivariant functions.

(defined on graphs of varying size n < Nmax )

Proof : « equivariant » polynomial ? >< Stone-Weierstrass theorem ? >< =

Thm (SW for equivariant functions)
(Keriven, Peyré 2019)

An algebra of equivariant functions (for
coordinate-wise product) that separates points
and separates coordinates is dense in the space
of equivariant|continuous functions.

v

Proof : non-trivial modif. from
Brosowski et al. « An elementary proof of
Stone-Weierstrass theorem » (1981)

« Any two coordinates not related by an automorphism can be separated by a function »
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Universality for Equivariant NN

Main contribution:

Thm (Keriven, Peyré 2019):

d
One layer equivariant GNNs [R™ — IR™ are dense in the space of
continuous equivariant functions.

(defined on graphs of varying size n < Nmax )

Proof : « equivariant » polynomial ? >< Stone-Weierstrass theorem ? >< =

Thm (SW for equivariant functions)
(Keriven, Peyré 2019)

An algebra of equivariant functions (for
coordinate-wise product) that separates points
and separates coordinates is dense in the space
of equivariant|continuous functions.

v

_
[
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- Proof : non-trivial modif. from

Brosowski et al. « An elementary proof of
Stone-Weierstrass theorem » (1981)

k
- Not valid for output R™

- Not valid for subgroups of 2.,

« Any two coordinates not related by an automorphism can be separated by a function »
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Conclusion

Summary

- Defined a class of Universal Invariant and Equivariant GNNs
- Proved an Equivariant Stone-Weierstrass Theorem (of independent interest)
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Conclusion

Summary

- Defined a class of Universal Invariant and Equivariant GNNs
- Proved an Equivariant Stone-Weierstrass Theorem (of independent interest)

Outlooks
- More general SW theorem to handle graph output and subgroups of permutations

- Deal with computational complexity due to high-order tensor / characterize the power of
low-order GNNs (see Maron et al 2019)

10! 102

- Study Universality / stability wrt weaker metrics (Gromov-Wasserstein...)

Take-home msg: GNNs are still in their infancy, both theoretically and in practice. Scalability
and stability remain challenging. Many opportunities !
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Thank you !

Keriven, Peyré. Universal Invariant and Equivariant Graph Neural Networks
NeurlPS 2019, arxiv:1905.04943

More at nkeriven.github.io
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