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Summary Studied architecture
We prove universal approximation theorems for 1-layer F1 R™
invariant and equivariant Graph Neural Networks. 3
nk2
» The studied (theoretical) GNNs have unbounded width R
and tensorization order. Fs
> Results are uniformly valid for (hyper)graphs of varying e
number of nodes, for a single set of parameters. R
» The equivariant case is much more involved and requires
a new Stone-Weierstrass theorem.
: 1-| GNNs: Fo =
Notations YEr RS :
» Graph: W € IR"™" d-Hypergraph: W & R™
» Permutation: bijection o : [n] — [n] 5, ks EdN )
» Permuted (hyper)graph: ox W & R™ Param. s : IR”k — R” e
» Invariant function: f(ox W) = f(W) A R k% R K
N - _ B; c R™, beR”"
» Equivariant function: f(ox W) =ox f(W) s '

width of network, tensor orders (unbounded)

linear, equivariant, can increase tensor order

linear, invariant ({ = 0) or equivariant ({ = 1)

equivariant biass.t. ox B, =B, oxb =0

0 : non-linearity, any for which the MLP universality theorem applies.

Invariant and equivariant linear layers Main results: universality of GNNSs
Theorem (Maron et al. [1]) Compact set of graphs: G = {W cR" ; n < Nmaxy || W] < R}.
There is a basis of b(k -+ p) equivariant linear operators T heorem (I\/laron et al. [2]; Keriven and Peyré [3])

R™ — IR™, where b(k) is the k" Bell number.

(invariant case: just take p = 0)

» Does not depend on n. Ex: there are exactly 15
. . . 2 2
equivariant linear operators IR"” — R" .

Theorem (Keriven and Peyré [3])

The set Fy of invariant GNNs is dense in the set of
invariant continuous functions on G (for the sup norm).

> the number of trainable parameters of f in (1) is The set F7 of equivariant GNNs is dense in the set of
S equivariant continuous functions on G (for the sup norm).

>~ (bld+ k) + blks +0) + b(k) ) +1

s=1

» A single set of parameters approximate functions on graphs of varying size uniformly well

» a GNN (1) with a fixed set of parameters can be applied to, » Equivariant case: much more difficult to prove (see below). Valid only for full group of
graphs of any size permutations, and order-1 output y € IR”.

Sketch of proof

Invariant case

Apply Stone-Weierstrass theorem (like in Hornik et al. [4]), quotienting G by graph isomorphisms.
Theorem (Stone-Weierstrass)

An algebra of continuous functions that separates points
is dense in the set of continuous functions.

» Algebra of GNNs (aka “the cos trick”) EASY

1. Authorize product of GNNs to obtain an algebra

2. Prove universality for p = cos

3. A product of cos is also a sum!

4. Approximate cos with any p using MLP universality theorem

» Separation of points HARD

» “For any two distinct points, there is a function that distinguishes them'.
» Here: “For two non-isomorphic graphs, there is a GNN that distinguishes them.”

» We prove: “Two graphs that coincide for every GNNs are isomorphic.”

Equivariant case

Impossible to use invariant polynomials (2] or regular Stone-Weierstrass theorem.
Theorem (Stone-Weierstrass for equivariant functions; Keriven and Peyré [3])
An algebra of equivariant continuous functions that separates points and

separates coordinates is dense in the set of continuous functions.

» Separation of coordinates: “for a given graph W, and any two coordinates 1 < i, j < n that are not related
by an automorphism of W (i.e. o x W = W), there is an equivariant GNN that distinguishes them.”

» Proof: non-trivial adaptation of [5]

Numerics (toy)
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Approximation results on synthetic data for invariant (left) or
equivariant (right) GNNs. The tensorization order k plays a
greater role than the width S.
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Convolutional GNNs

Approximation power /stability with respect to
weaker metrics on graphs (e.g. cut-metric)

Behavior in the large-graph limit (see [6])
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