Summary

We prove universal approximation theorems for 1-layer invariant and equivariant Graph Neural Networks.

- The studied (theoretical) GNNs have unbounded width and tensorization order.
- Results are uniformly valid for (hyper)graphs of varying number of nodes, for a single set of parameters.
- The equivariant case is much more involved and requires a new Stone-Weierstrass theorem.

Notations

- **Graph:** $W \in \mathbb{R}^{m \times n}$, d-**Hypergraph:** $W \in \mathbb{R}^{d \times n}$
- **Permutation:** bijection $\sigma : [n] \to [n]$
- **Permuted (hyper)graph:** $\sigma \ast W \in \mathbb{R}^{m \times n}$
- **Invariant function:** $f(\sigma \ast W) = f(W)$
- **Equivariant function:** $f(\sigma \ast W) = \sigma \ast f(W)$

Invariant and equivariant linear layers

Theorem (Maron et al. [1])

There is a basis of $b(k + p)$ equivariant linear operators $\mathbb{R}^d \to \mathbb{R}^d$, where $b(k)$ is the kth Bell number.

(invariant case: just take $p = 0$)

- Does not depend on n. Ex: there are exactly 15 equivariant linear operators $\mathbb{R}^2 \to \mathbb{R}^2$.
- The number of trainable parameters of ℓ-layer GNNs is \(\sum_{k=1}^{\ell} \binom{(d+n)}{n} (k+1) + 1 \)
- A GNN (1) with a fixed set of parameters can be applied to graphs of any size.

Sketch of proof

Invariant case

Apply Stone-Weierstrass theorem (like in Hornik et al. [4]), quotienting \mathbb{G} by graph isomorphisms.

Theorem (Stone-Weierstrass)

An algebra of continuous functions that separates points is dense in the set of continuous functions.

Algebra of GNNs (aka “the cos trick”)

1. Authorize product of GNNs to obtain an algebra
2. Prove universality for $\rho = \cos$
3. A product of cos is also a sum!
4. Approximate cos with any ρ using MLP universality theorem

Separation of points

- For any two distinct points, there is a function that distinguishes them.
- Here: "For two non-isomorphic graphs, there is a GNN that distinguishes them."
- We prove: “Two graphs that coincide for every GNNs are isomorphic.”

Equivariant case

Theorem (Stone-Weierstrass for equivariant functions; Keriven and Peyré [3])

An algebra of equivariant continuous functions that separates points and separates coordinates is dense in the set of continuous functions.

Separation of coordinates: “for a given graph W, and any two coordinates $1 \leq i, j \leq n$ that are not related by an automorphism of W (i.e. $\sigma \ast W = W$), there is an equivariant GNN that distinguishes them.”

Proof: non-trivial adaptation of [5]

Main results: universality of GNNs

Compact set of graphs: $\mathbb{G} = \{ W \in \mathbb{R}^{d \times n} ; n \leq n_{\text{max}}, \|W\| \leq R \}$

Theorem (Maron et al. [2]; Keriven and Peyrè [3])

The set \mathcal{F}_0 of invariant GNNs is dense in the set of invariant continuous functions on \mathbb{G} (for the sup norm).

Theorem (Keriven and Peyré [3])

The set \mathcal{F}_0 of equivariant GNNs is dense in the set of equivariant continuous functions on \mathbb{G} (for the sup norm).

- A single set of parameters approximate functions on graphs of varying size uniformly well
- Equivariant case: much more difficult to prove (see below). Valid only for full group of permutations, and order-1 output $y \in \mathbb{R}^d$.

Outlooks

- **Convolutional GNNs**
- Approximation power/stability with respect to weaker metrics on graphs (e.g. cut-metric)
- Behavior in the large-graph limit (see [6])

Numerics (toy)

Approximation results on synthetic data for invariant (left) or equivariant (right) GNNs. The tensorization order k plays a greater role than the width s.

References