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Summary

We prove universal approximation theorems for 1-layer
invariant and equivariant Graph Neural Networks.
I The studied (theoretical) GNNs have unbounded width

and tensorization order.
I Results are uniformly valid for (hyper)graphs of varying

number of nodes, for a single set of parameters.
I The equivariant case is much more involved and requires

a new Stone-Weierstrass theorem.

Notations
I Graph: W ∈ Rn×n d -Hypergraph: W ∈ Rnd

I Permutation: bijection σ : [n]→ [n]
I Permuted (hyper)graph: σ ? W ∈ Rnd

I Invariant function: f (σ ? W ) = f (W )

I Equivariant function: f (σ ? W ) = σ ? f (W )

Studied architecture
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1-layer GNNs: F` =

f (·) =
S∑

s=1
Hs [ρ (Fs[·] + Bs)] + b

 (1)

Param.


S , ks ∈N width of network, tensor orders (unbounded)
Fs : Rnd → Rnks linear, equivariant, can increase tensor order
Hs : Rnks → Rn` linear, invariant (` = 0) or equivariant (` = 1)
Bs ∈ Rnks

, b ∈ Rn` equivariant bias s.t. σ ? Bs = Bs, σ ? b = b
ρ : non-linearity, any for which the MLP universality theorem applies.

Invariant and equivariant linear layers

Theorem (Maron et al. [1])
There is a basis of b(k + p) equivariant linear operators
Rnk → Rnp, where b(k) is the k th Bell number.

(invariant case: just take p = 0)

I Does not depend on n. Ex: there are exactly 15
equivariant linear operators Rn2 → Rn2.

I the number of trainable parameters of f in (1) is
S∑

s=1

(
b(d + ks) + b(ks + `) + b(ks)

)
+ 1

I a GNN (1) with a fixed set of parameters can be applied to
graphs of any size

Main results: universality of GNNs

Compact set of graphs: G =
{

W ∈ Rnd
; n 6 nmax, ‖W ‖ 6 R

}
.

Theorem (Maron et al. [2]; Keriven and Peyré [3])
The set F0 of invariant GNNs is dense in the set of

invariant continuous functions on G (for the sup norm).

Theorem (Keriven and Peyré [3])
The set F1 of equivariant GNNs is dense in the set of

equivariant continuous functions on G (for the sup norm).

I A single set of parameters approximate functions on graphs of varying size uniformly well
I Equivariant case: much more difficult to prove (see below). Valid only for full group of

permutations, and order-1 output y ∈ Rn.

Sketch of proof

Invariant case
Apply Stone-Weierstrass theorem (like in Hornik et al. [4]), quotienting G by graph isomorphisms.

Theorem (Stone-Weierstrass)
An algebra of continuous functions that separates points

is dense in the set of continuous functions.

I Algebra of GNNs (aka “the cos trick”) EASY
1. Authorize product of GNNs to obtain an algebra
2. Prove universality for ρ = cos
3. A product of cos is also a sum!
4. Approximate cos with any ρ using MLP universality theorem

I Separation of points HARD
I “For any two distinct points, there is a function that distinguishes them’.’
I Here: “For two non-isomorphic graphs, there is a GNN that distinguishes them.”
I We prove: “Two graphs that coincide for every GNNs are isomorphic.”

Equivariant case

Impossible to use invariant polynomials [2] or regular Stone-Weierstrass theorem.
Theorem (Stone-Weierstrass for equivariant functions; Keriven and Peyré [3])

An algebra of equivariant continuous functions that separates points and
separates coordinates is dense in the set of continuous functions.

I Separation of coordinates: “for a given graph W , and any two coordinates 1 6 i , j 6 n that are not related
by an automorphism of W (i.e. σ ? W = W ), there is an equivariant GNN that distinguishes them.”

I Proof: non-trivial adaptation of [5]

Numerics (toy)
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Approximation results on synthetic data for invariant (left) or
equivariant (right) GNNs. The tensorization order k plays a
greater role than the width S.

Outlooks
I Convolutional GNNs
I Approximation power/stability with respect to

weaker metrics on graphs (e.g. cut-metric)
I Behavior in the large-graph limit (see [6])
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