
2013 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 22–25, 2013, SOUTHAMPTON, UK

STRUCTURED SPARSITY USING BACKWARDS ELIMINATION FOR AUTOMATIC MUSIC
TRANSCRIPTION

Nicolas Keriven∗

CMAP
Ecole polytechnique

Route de Saclay, Palaiseau, France

Ken O’Hanlon, Mark D. Plumbley†

Centre for Digital Music
Queen Mary University of London

Mile End Road, London, UK

ABSTRACT
Musical signals can be thought of as being sparse and struc-
tured, with few elements active at a given instant and tempo-
ral continuity of active elements observed. Greedy algorithms
such as Orthogonal Matching Pursuit (OMP), and structured
variants, have previously been proposed for Automatic Mu-
sic Transcription (AMT), however some problems have been
noted. Hence, we propose the use of a backwards elimination
strategy in order to perform sparse decompositions for AMT,
in particular with a proposed alternative sparse cost function.
However, the main advantage of this approach is the ease with
which structure can be incorporated. The use of group spar-
sity is shown to give increased AMT performance, while a
molecular method incorporating onset information is seen to
provide further improvements with little computational effort.

Index Terms— structured sparsity, music transcription,
backwards elimination, group sparsity

1. INTRODUCTION

Given a signal s ∈ RM and a dictionary matrix D ∈ RM×N ,
sparse approximation seeks a coefficient vector, x, with few
active elements such that s ≈ Dx. Ideally, this is performed
by finding x that minimises the sparse cost function

Csparse = ‖s−Dx‖22 + λ‖x‖0 (1)

where ‖x‖0 = |x 6= 0|. Finding a general solution to the min-
imisation of (1) is NP-hard [1] and a `1 norm penalty is used
to effect a convex relaxation known as Basis Pursuit Denois-
ing [1] or Lasso [2]. A popular alternative approach is to use
greedy methods such as Orthogonal Matching Pursuit (OMP)
[3], which build up an approximation by iteratively adding
the atom most correlated with the residual energy. Greedy
methods can suffer when presented with dictionaries contain-
ing atoms that are correlated, and several algorithms have re-
cently been proposed which include backtracking steps [4].
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Often in a signal representation, it can be assumed that
certain atoms will be active together, and structured sparse
methods allow these assumptions to be incorporated. Group
sparsity assumes that certain atoms tend to be active in the
same coefficient vector, and algorithms such as Group Lasso
[5] and Block-OMP [6] are derived from the sparse method-
ology to solve this problem. Multichannel, or simultaneous,
sparsity [7] considers that a similar atom is active in many
sensors at once. Molecular sparse representations [8] consider
structure from related coefficient vectors such as neighbour-
ing time frames in an audio spectrogram.

Automatic Music Transcription (AMT) seeks machine
understanding of a musical signal in terms of pitch-time ac-
tivity. Spectrogram decompositions are a popular approach
for AMT in which the approximation S ≈ DX is sought
where S ∈ RM×T is the spectrogram, D ∈ RM×N is a
dictionary and X ∈ RN×T is the activation matrix. While
spectrograms may be decomposed in an unsupervised man-
ner using Non-negative Matrix Factorisation (NMF) methods
[9] [10], superior AMT results are seen with a supervised
NMF approach when a fixed pitch-labelled dictionary is used
[10] [11]. Thresholding is often used to ascertain the final
binary output for AMT, and a typical strategy is to adapt the
threshold to the maximum value of the activation matrix, X,
[10]. Greedy sparse algorithms have also been used for AMT.
Leveau et al [12] propose a modified molecular Matching
Pursuit using a tracking step to decompose a spectrogram
with a dictionary of pitch/instrument labeled atoms. Tjoa
et al [13] propose the use of OMP with large overcomplete
dictionaries consisting of datapoints, and we proposed the use
of group and molecular variants of OMP [14].

Hence the use of backwards elimination with structured
sparsity for AMT is explored in the rest of this paper. Some
background material is outlined in the next section, before
the proposed methodology is introduced. A modified sparse
cost function, group and molecular sparse approaches, and an
alternative thresholding strategy are proposed. Experiments
are then described before concluding with pointers to further
work.
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2. BACKGROUND

2.1. Non-Negative Least Squares

Non-Negative Least Squares (NNLS) is a well studied con-
strained least squares problem:

x← min
x
‖s−Dx‖22 s.t. x ≥ 0. (2)

The classic NNLS [15] is an active set algorithm that proceeds
by adding an atom and performing a least squares backpro-
jection at each iteration. Atoms in the active set with nega-
tive backprojection coefficients are ejected. Other active set
[16], and gradient-based approaches have been proposed. and
thresholded NNLS (T-NNLS) is seen to outperform `1 min-
imisation for sparse non-negative representations [17] .

2.2. Backwards Elimination

Backwards elimination is a stepwise approach which starts
from a set, Γ, containing many atom indices, and iteratively
eliminates an atom with index n̂ so that Γ← Γ\n̂ where

n̂ = arg min
n

∆rn (3)

and
∆rn = ‖r̄n‖22 − ‖ri‖22 (4)

where r̄n is the residual given the hypothetical sparse support
Γn = Γ\n, and ri is the residual at the ith iteration. A fast
version of the backwards elimination step is proposed as part
of the Greedy Sparse Least Squares (GSLS) algorithm [18] :

∆rn =
x2
n

[(DT
ΓDΓ)−1]n,n

. (5)

where x is the Least Squares solution vector using the current
support, Γ. The elimination criteria (5) is derived using block
matrix inverse updates, and can be calculated for all active
atoms simultaneously using matrix / vector operations.

2.3. Structured Sparsity

Group sparsity considers that certain atoms tend be active to-
gether in the same coefficient vector. Using the set of tuples
L = {Ll}whereLl contains the indices of the lth group gives
the following notation for the lth group of the dictionary, D[l],
and of the coefficient vector, x[l]:

D[l] = [dLl(1), ...,dLl(|Ll|)]

x[l] = [xLl(1), ..., xLl(|Ll|)]
T

where Ll(i) is the ith member of the lth tuple of the set of
tuples L and

∑
l |Ll| = N .

Algorithms for solving the group sparse problem are de-
rived from the general sparse representations methodology.

Greedy methods such as Block-OMP [6] use selection criteria
considering all atoms in a group. Group Lasso [5] replaces the
`1-norm penalty term [2] [1] with a mixed `p,q vector norm :

‖x‖p,q = ‖g‖q (6)

where gl = ‖x[l]‖p. Different combinations of (p, q) are
used depending on the desired properties of the decompo-
sition. When few groups are to be active, the `2,0 is opti-
mal, while the `2,1-norm relaxation is used [6]. An alterna-
tive group sparse penalty, employing the subspace projection
norm as the group coeffcient, gl = ‖D[l]x[l]‖2 was proposed
in [19]. This approach is referred to here as the `⊥,0-norm.

Simultaneous sparsity considers that a similar atom is ac-
tive in several channels at once, using algorithms similar to
those for group sparsity to decompose several signals simul-
taneously. Molecular sparsity [8] considers similar atoms ex-
isting in different vectors, such as adjacent time frames of a
spectrogram that may be correlated, while the relationships
may not be explicitly known. Typically molecular algorithms
are greedy, and different approaches to molecular clustering
can be used. For instance, a tracking approach whereby a
molecule is formed by selecting one atom and then selecting
adjacent atoms is used in [8] and [12], while an agglomerative
clustering approach is used in [20] and [14].

3. METHOD

3.1. Modified sparse cost function

It can be seen (5) that the backwards elimination cost for an
atom is scaled to the square of the least squares solution co-
efficients. Further to this it has been observed that NNLS
and NMF coefficients scale well, in terms of a thresholding
parameter, relative to the use of varying spectrogram trans-
forms. In light of this, a modified `0 sparse cost function is
proposed:

Cmod = ‖s−Dx‖2 + λ‖x‖0 (7)

differing from the standard sparse cost function (1) through
using the residual error norm instead of the least squares error.

It is easily perceived how (3), the backwards elimination
criteria performs a local optimisation of Csparse (1) when
∆rn̂ < λ, which can be used as a stopping condition for a
backwards elimination strategy where λ represents a thresh-
old. In terms of using the backwards elimination strategy
with Cmod (7), the original elimination criteria (3) can be
used, affording the use of the fast calculation (5). Only the
stopping condition is affected, becoming ∆̄rn̂ < λ where

∆̄rn̂ =
√
‖ri‖22 + ∆rn̂ − ‖ri‖2. (8)

It is proposed to use the NNLS solution vector to initialise the
backwards elimination approach, which is then referred to as
Backwards From NNLS (BF-NNLS) outlined in Algorithm 1.



Algorithm 1 BF-NNLS (Cmod)
Input D ∈ RM×N , s ∈ RM λ
Initialise
x0 = arg minx ‖s−Dx‖22 s.t. x ≥ 0
Γ = {j|xj > 0}; i = 0
r0 = s−Dx0

repeat
i = i+ 1; Select n̂ using (3);
Γ = Γ\n̂ ; Calculate ∆̄rn̂ using (8);
‖ri‖2 = ‖ri−1‖2 + ∆̄rn̂

until ∆̄rn̂ > λ
Output Γ

3.2. Group backwards elimination

We have previously [14] used OMP-based algorithms with a
dictionary comprised of a union of subspaces, each of which
represented one note, for AMT. This approach led to greater
modelling power in the dictionary and improved AMT perfor-
mance. A group variant of BF-NNLS that proceeds similarly
but uses a group elimination criteria (G-BF-NNLS)

l̂ = arg min
l

∆r[l] (9)

is proposed, where ∆r[l] = ‖r̄[l]‖22 − ‖ri‖22, similar to the
standard backward elimination cost (4).

Using block inverse matrices, similar to [18], it is pro-
posed to calculate the backward elimination step by

∆r[l] =
x[l]Tx[l]

[(DT
ΓDΓ)−1][l, l]

(10)

where Y[l, l] refers to a principal submatrix of the square ma-
trix Y containing only the elements indexed by the lth block.
However, (10) requires a matrix inversion for each group and
cannot be calculated for all groups simultaneously as in the
single atom case (5). It is worth noting that the size of each
group may differ depending on the number of atoms selected
during the initial NNLS decomposition.

In a similar fashion to the BF-NNLS algorithm, a modi-
fied group sparse cost function is proposed

Cmod(G) = ‖s−Dx‖2 + λ‖x‖⊥,0 (11)

and the cost of the group downdate can also be calculated in
a similar fashion using a group version of (8).

3.3. Molecular backward elimination

Further structure can be added to the decomposition by con-
sidering time-persistence. Here, it is proposed to do this in a
straightforward manner, using an onset detector to delineate
strips of the spectrogram. While the previous methods per-
formed frame-wise decompositions, here the decompositions

consider all time frames of a spectrogram strip simultane-
ously, leveraging the relationship between time frames in or-
der to cancel spurious eliminations. This can also be consid-
ered a simultaneous sparse [7] approach. Similarly, through
using several time frames together, with a group structure for
each note at each time frame, this method can be seen as
similar to that of the Collaborative Hierarchical Lasso (CHi-
Lasso) [21].

Considering the set of detected onsetsO = {o1, ..., oQ} ⊂
{1...N}, the elimination criteria for a group of pitch-similar
atoms across, Sq , the qth strip of the spectrogram is given by

η = arg min
η

oq+1∑
t=oq

∆rηt (12)

where η can represent n or [l], in the sparse and group sparse
cases respectively. The selection criteria (12) is then used
in the Molecular-BF-NNLS, outlined in Algorithm 2, which
proceeds similar to BF-NNLS with one notable difference.
M-BF-NNLS runs until the support is empty, assigning an
elimination value to each pitch-time point in the matrix X̄,
which is then thresholded in a similar manner to NNLS.

Algorithm 2 M-(G)BF-NNLS
Input

D ∈ RM×N; K = oq+1 − oq + 1; X0 ∈ RN×K
Sq ∈ RM×K ; Γq .

Initialise
i = 0; X̄ = 0N×K ; R0 = Sq −DX0

repeat
i = i+ 1
Select η̂ using (12)
for t = 1 : K do

Γqt = Γqt\η̂
Calculate ∆̄rη̂t using (8)
‖rit‖2 = ‖ri−1

t ‖2 + ∆̄rη̂t
X̄η̂,t = ∆̄rη̂t

end for
until |Γ| = 0
Output X̄

3.4. Signal adaptive thresholding

Typically, thresholding of the activation matrix, X, is per-
formed to determine the AMT output. A common approach
[10] is to adapt the threshold to the signal using λ = δ ×
maxX, where δ is a parameter used in common across many
pieces. The maximum activation value may be spurious, and
it may be more robust to use a value that is more indicative of
the signal in general. To this end the value Mm%(X) relating
the mean of the highest m% positive values of X is used:

λ = δ ×Mm%(X). (13)



4. EXPERIMENTS

Transcription experiments were performed on a subset of
MAPS [22], a database of MIDI-aligned piano pieces. The
subset used, EnStDkCl, was recorded live on a Disklavier, and
similar to [14] [23], the first 30sec of each piece was used.
The selected pieces were downsampled to 22.05kHz, and
spectrograms were formed in two transforms; an STFT with
a window size of 92ms with a 75% overlap and an ERBT
[10] [23] with dimension 512 interpolated onto a 23ms grid.

MAPS also contains samples of isolated notes, which are
used to form the dictionaries used for the experiments. We
follow the experimental setup in [14], in which fixed dictio-
naries were concatenated from pitch-labeled subdictionaries
Dη ∈ RM×P , each of which is learnt from a single note using
Euclidean NMF [9]. Two different dictionaries were learnt
for each transform, single atom dictionaries for the standard
sparse case (P = 1), and subspace dictionaries for the group
sparse case with P = 5, as this groupsize was previously ob-
served to perform well in group sparse AMT decompositions
[14].

Frame based measures were used to compare the perfor-
mance of the various algorithms, whereby the MIDI ground
truth was compared with the AMT sparse support, or piano
roll, at each time frame. A true positive tp was registered
when a point in the pitch-time domain is supported by both
the the ground truth and the AMT output, and false positives
fp and false negatives fn are registered when the pitch-time
point is supported only in the AMT output, and in the ground
truth, respectively. Using these classifications, the follow-
ing metrics are used to measure the performance of the al-
gorithms: Precision, P = # tp

# tp+# fp , Recall,R = # tp
# tp+# fn

and F-measure, F = 2× P×RP+R .
For all decompositions an initial NNLS was performed

using the Fast-NNLS [16] algorithm, an optimised version of
the classic NNLS algorithm [15]. A threshold was used with
all algorithms. In the case of T-NNLS and the Molecular-
BF-NNLS algorithms thresholding was performed on the ac-
tivation matrix, while in the case of the (G)BF-NNLS, the
threshold was applied as a stopping condition. The value of
the threshold was calculated using the coefficients of the ini-
tial NNLS activation matrix using the adaptive thresholding
(13), with m = 15%, for all algorithms. A range of values
of δ ∈ {0, ..., 50}dB was used, and the results presented con-
sider the optimal F-measure found at δopt across all pieces.

4.1. Modified Sparse Cost Function

The first set of experiments compare T-NNLS with BF-NNLS
using both Csparse (1) and Cmod (7) sparse cost functions.
Following initial NNLS decompositions in both transforms
with the single atom dictionaries, the relevant thresholding
and eliminations were performed for each approach.

The results are shown in Table 1, where it is seen that

STFT ERBT
δopt F δopt F

T-NNLS 15 64.3 14 68.5
BF-NNLS (Csparse) 5 64 31 67.8
BF-NNLS (Cmod) 27 65.7 27 69.8

Table 1. Comparison of T-NNLS with BF-NNLS

BF-NNLS with Cmod (7) outperforms the other methods. It is
also seen that δopt is consistent across transforms for T-NNLS
and BF-NNLS (Cmod). Using Csparse (1) with BF-NNLS pro-
duces worse results than T-NNLS and a large discrepancy in
the values of δopt between the two transforms. A considerable
difference is seen between the results for STFT and ERBT, as
previously observed [23].

4.2. Group Sparsity

Group sparse decompositions were run using the subspace
dictionaries, with Group T-NNLS (GT-NNLS) and G-BF-
NNLS. GT-NNLS refers to a NNLS decomposition for which
the group coefficients are calculated by

gl,n = ‖D[l]xn[l]‖2 (14)

and for which thresholding is performed on G in a similar
manner to T-NNLS.

Results for these experiments are presented in Table 2
alongside the results of the algorithms using single atom dic-
tionaries for comparison. The GT-NNLS provides a small
improvement over the T-NNLS, however this is less of an
improvement than seen with BF-NNLS. The ability of the
subspace dictionary to afford better modeling of the signal is
only exploited when the backwards elimination strategy and
its explicit group sparse penalty is introduced, resulting in im-
provements of 6 to 7%, a large enhancement. Results not
displayed show the improvement produced by using the mod-
ified sparse cost function in the group case (11) is larger than
that for the the standard case (1) shown in the last section.

4.3. Molecular Approach

Experiments were run using the M-BF-NNLS, in the sparse
and group sparse frameworks. A phase-based onset detector
[24] was used to delineate the strips of the spectrogram, in
which molecular decompositions take place. The experimen-
tal setup is the same as previous sections, with decomposi-
tions performed on both transforms, with both groupsizes.

The results are shown in Table 2 where they can be com-
pared with the results from the standard and group sparse ap-
proaches. In both frameworks the molecular approach is seen
to improve upon previous results. In the case of the STFT
the results are more enhanced being of the order of 2.5%, and
bringing these results close to those of the ERBT.



STFT ERBT
P R F P R F

T-NNLS 66.4 62.2 64.3 72.7 64.6 68.5
GT-NNLS 67.1 63.6 65.3 69.1 70.0 69.6
BF-NNLS 69.6 62.3 65.7 75.1 65.3 69.8

GBF-NNLS 76.7 68.1 72.2 78.1 73.2 75.6
M-BF-NNLS 71.7 64.7 68.0 75.0 68.2 71.4

M-GBF-NNLS 78.0 71.9 74.8 79.0 74.5 76.7
β-NMF 73.0 69.8 71.0 75.5 74.2 74.9

Table 2. AMT with different algorithms.

Fig. 1. Elimination cost at each iterations in a selected single time-
frame, for GBF-NNLS and M-GBF-NNLS. Min M-GBF-NNLS in-
dicates the smallest elimination cost during M-GBF-NNLS. Itera-
tions where ground truth atoms are selected are outlined.

The results are also compared with decompositions us-
ing supervised β-NMF with the single atom dictionaries with
β = 0.5. This set up has been shown to give state of the art
supervised NMF results for AMT in [10], where it is noted
that using more than one atom to represent a note decreases
the AMT performance. It is seen, in both transforms, that
the β-NMF outperforms all other algorithms using the single
atom dictionaries. However all group BF-NNLS algorithms
outperform β-NMF, an effect that is further enhanced with
molecular group decompositions.

Further inspection of the results shows that the molecular
method tends to more efficiently capture ends of long notes
giving better R, while maintaining P . It is worth pointing
out that, fundamentally, the molecular and unstructured ap-
proaches are the same, differing only in the fact that some
temporal information is presented to the molecular selection
criteria. However, this extra information does cause changes,
tending to rule out spurious elements. An example of this
interaction is shown in Figure 1 describing how ∆̄r behaves
along iterations in a single time-frame for GBF-NNLS and

Detected Onsets Ground truth
P R F P R F

M-BF-NNLS 75.0 68.2 71.4 75.3 68.4 71.7
M-GBF-NNLS 79.0 74.5 76.7 79.5 74.8 77.1

Table 3. Effect of onset detection on molecular algorithm using
ERBT.

M-GBF-NNLS. For both algorithms, there is no mathemat-
ical guarantee that ∆̄r will increase at each iteration, as the
support changes over time and the atoms are not orthogo-
nal. However, for GBF-NNLS, the elimination cost tends
to increase monotonically, with exceptions typically found
among the non-relevant atoms far below the stopping thresh-
old, with very limited variation. On the contrary, M-GBF-
NNLS doesn’t necessarily select the atom with the smallest
elimination cost at each iteration, and the corresponding curve
displays a greater variability. In Figure 1, the iterations at
which ground truth atoms are selected are indicated for each
algorithm. Here it is seen that M-GBF-NNLS selects these
correct atoms at a later stage than in the GBF-NNLS, and they
therefore have a greater elimination cost.

The onsets detection performed prior to the molecular
method can sometimes perform poorly, particularly when the
onset rate is high. In order to ascertain the level at which
this may effect the overall performance, a comparison was
made with the molecular algorithm using the ground truth
onsets. Results given in Table 3 show the improvement in
performance using the ground truth onsets to be relatively
small.

4.4. Adaptive threshold

A small improvement in the F-measure when using the pro-
posed adaptive thresholding method is observed, of between
0.1 and 0.8%. Enhancements are more pronounced in the
group case. While the improvement can seem insignificant, it
is seen to be robust, holding for all algorithms, and computa-
tionally inexpensive.

5. CONCLUSIONS AND FURTHER WORK

We have proposed a backwards elimination approach to per-
form sparse decompositions in the context of AMT, using
a modified sparse cost function. This approach was then
extended to the group sparse framework, bringing the per-
formance in line with other state-of-the-art decomposition
methods. The modified sparse cost functions were seen to be
apt, affording improved performance and consistent relative
thresholding across transforms, and their importance may
extend beyond the context of AMT. The proposed backwards
elimination approach improves on OMP-based approaches,
allowing easy determination of a stopping condition with



improved time-continuity observed in decompositions, while
suffering relatively in terms of computational expense. A
variation on decomposition-adaptive thresholding was also
proposed, effecting a mild but consistent improvement. Fur-
ther work will focus on further adapting the threshold by
incorporating some local measures of the decomposition.

A molecular variant of the BF-NNLS approach, using on-
sets to delineate areas of the spectrogram, was also proposed,
showing further improvements in AMT performance particu-
larly in the case of the STFT. This approach demonstrates the
ease with which structure can be incorporated in the backward
elimination framework, and further work will investigate if
this may be applicable for the purpose of multi-instrument
AMT. Multi-instrument signals are seen to display co-activity
of instruments at many active points of NMF-based decompo-
sitions [10], and greedy sparse approaches have been seen to
be relatively successful in this scenario [12]. We believe that
the proposed backwards elimination method can outperform
such OMP-based approaches.
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