Sparse and Smooth: Spectral Clustering in the dynamic SBM

Nicolas Keriven¹, Samuel Vaiter²

¹CNRS, GIPSA-lab ²CNRS, IMB nicolas.keriven@gipsa-lab.grenoble-inp.fr

Cluster the nodes of a graph using its structure.

Application in:

- Social network analysis
- Point cloud segmentation
- Etc, etc

Cluster the nodes of a graph using its structure.

Application in:

- Social network analysis
- Point cloud segmentation
- Etc, etc

Classical algorithm:

Cluster the nodes of a graph using its structure.

Application in:

- Social network analysis
 - Point cloud segmentation
- Etc, etc

- Take
$$W = \begin{cases} A \\ D - A \\ Id - D^{-1/2}AD^{-1/2} \end{cases}$$

Cluster the nodes of a graph using its structure.

Application in:

- Social network analysis
- Point cloud segmentation
- Etc, etc

- Take $W = \begin{cases} A \\ D-A \\ Id-D^{-1/2}AD^{-1/2} \end{cases}$

- Compute its k-SVD $W = U \Delta U^{\top}, \quad \tilde{U} = U_{:,1:k}$

Cluster the nodes of a graph using its structure.

Application in:

- Social network analysis
 - Point cloud segmentation
 - Etc, etc

- Take $W = \begin{cases} A \\ D-A \\ Id-D^{-1/2}AD^{-1/2} \end{cases}$

- Compute its k-SVD $W = U \Delta U^{\top}, \quad \tilde{U} = U_{:,1:k}$
- Cluster the rows of \tilde{U} with k-means

Cluster the nodes of a graph using its structure.

Application in:

- Social network analysis
 - Point cloud segmentation
 - Etc, etc

- Take $W = \begin{cases} A \\ D-A \\ Id-D^{-1/2}AD^{-1/2} \end{cases}$

- Compute its k-SVD $W = U \Delta U^{\top}, \quad \tilde{U} = U_{:,1:k}$
- Cluster the rows of $ilde{U}$ with k-means
- Many many (fast) variants...

Sparsity = density of edges

 $B \in [0,1]^{K \times K}$ Symmetric probability matrix

 $\begin{cases} a_{ij} \sim \operatorname{Ber}(B_{k\ell}) & \text{Independent edges} \\ \text{when } \Theta_{ik} = \Theta_{j\ell} = 1 \end{cases}$

Sparsity = density of edges $B = \alpha_n B^0$

Often $B^0 = (1 - \tau)Id + \tau \mathbf{1}_{n \times n}$

Sparsity = density of edges $B = \alpha_n B^0$

Often
$$B^0 = (1 - \tau)Id + \tau \mathbf{1}_{n \times n}$$

- Dense - Easy - Easy - Sparse - Hard (some asymptotic results from statistical physics) [Krzakala, Mossel, Massoulié, Abbe...] - Relatively sparse

 $\alpha_n \sim \log n/n$

- easier...

Goal: Exploit past data to

- Track communities
- Enforce smoothness/consistency
- Improve result at time t

Many approaches (Bayesian, variational...)

Sparse and smooth: intuitively, the smoother the data, the sparser it could be...

Sparse and smooth: intuitively, the smoother the data, the sparser it could be...

Thm (Keriven, Vaiter)

- SC with $W = \sum_{k} \beta_{k} A_{t-k}$

Sparse and smooth: intuitively, the smoother the data, the sparser it could be...

Sparse and smooth: intuitively, the smoother the data, the sparser it could be...

Remember we already had $\varepsilon_n \sim o\left(\frac{1}{n\alpha_n}\right)$

$$\left(L(\hat{\Theta},\Theta) \lesssim C_r \frac{K^2}{n\alpha_n(1-\tau)^2} \rho_n\right)$$

aipsa-lab

Normalized Laplacian

In practice, the normalized Laplacian works better. $L(A) = D(A)^{-1/2}AD(A)^{-1/2}$

- No real explanation (some hints...)
- Here we show that **it's not worse**, but require (very slightly) stronger hypothesis
 - The proof has interesting by-products...

Normalized Laplacian

In practice, the normalized Laplacian works better. $L(A) = D(A)^{-1/2}AD(A)^{-1/2}$

- No real explanation (some hints...)
- Here we show that it's not worse, but require (very slightly) stronger hypothesis
 - The proof has interesting by-products...

Sketch of sketch of proof

Proof is based on **spectral norm concentration**

 $||A - \mathbb{E}A|| \quad ||L(A) - L(\mathbb{E}A)||$

+ classical "Davis-Kahan"-based perturbation analysis + almost-optimal k-means

May not be the best criterion ...

Sketch of sketch of proof

Proof is based on **spectral norm concentration**

 $||A - \mathbb{E}A|| \quad ||L(A) - L(\mathbb{E}A)||$

+ classical "Davis-Kahan"-based perturbation analysis + almost-optimal k-means

Summary (valid for **any matrix with Bernoulli entries**)

May not be the best criterion...

	Static		Dynamic		
	Adjacency	Laplacian	Adjacency	Laplacian	Sparsity
Oliveira 2009	$\log n$	1			$\alpha_n\gtrsim n^{-1}\log n$
Bandeira 2016	$\sqrt{\log n}$				$\alpha_n\gtrsim n^{-1}$
Lei 2015	$\sqrt{\alpha_n n}$				$\alpha_n \gtrsim n^{-1} \log n$
Pensky 2019	$\sqrt{\alpha_n n}$		$\sqrt{\alpha_n n \rho_n}$		$\alpha_n \gtrsim n^{-1} \log n$
Us	$\sqrt{\alpha_n n}$	$\sqrt{1/(\alpha_n n)}$	$\sqrt{\alpha_n n \rho_n}$	$\sqrt{ ho_n/(lpha_n n)}$	$\alpha_n/\rho_n\gtrsim n^{-1}\log n$
Lleaful in many other contexts l					

Useful in many other contexts !

- We showed a theoretical link between smoothness and sparsity in dynamic SC
- As a by-product, obtained best spectral concentration for normalized Laplacian

- We showed a theoretical link between smoothness and sparsity in dynamic SC
- As a by-product, obtained best spectral concentration for normalized Laplacian

Outlooks

- We showed a theoretical link between smoothness and sparsity in dynamic SC
- As a by-product, obtained best spectral concentration for normalized Laplacian

Outlooks

- Choice of forgetting factor in practice?
 - Theoretical bounds-based methods do not work in practice...

- We showed a theoretical link between smoothness and sparsity in dynamic SC
- As a by-product, obtained best spectral concentration for normalized Laplacian

Outlooks

- Choice of forgetting factor in practice?
 - Theoretical bounds-based methods do not work in practice...
- Sparse, constant smoothness analysis
 - Some conjectures from statistical physics

- We showed a theoretical link between smoothness and sparsity in dynamic SC
- As a by-product, obtained best spectral concentration for normalized Laplacian

Outlooks

- Choice of forgetting factor in practice?
 - Theoretical bounds-based methods do not work in practice...
- Sparse, constant smoothness analysis
 - Some conjectures from statistical physics

Keriven, Vaiter. **Sparse and Smooth: improved guarantees for Spectral Clustering in the Dynamic Stochastic Block Model.** *arXiv:2002.02892*

