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Sparse and Smooth:

Spectral Clustering in the dynamic SBM
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- With proba                 :

Better if smooth enough



Sparse and smooth…?

Sparse and smooth: intuitively, the smoother the data, the sparser it could be...



Sparse and smooth…?

Thm (Keriven, Vaiter)

- SC with

Sparse and smooth: intuitively, the smoother the data, the sparser it could be...



Sparse and smooth…?

Thm (Keriven, Vaiter)

- SC with

- Uniform [Pensky]

- Exponential [Chi, Xu]

Sparse and smooth: intuitively, the smoother the data, the sparser it could be...

Exponential 
performs better in 
practice, and      is 
easier to choose 
than



Sparse and smooth…?

Thm (Keriven, Vaiter)

- SC with

- Improved sparsity:

- Uniform [Pensky]

- Exponential [Chi, Xu]

Sparse and smooth: intuitively, the smoother the data, the sparser it could be...

Exponential 
performs better in 
practice, and      is 
easier to choose 
than



Sparse and smooth…?

Thm (Keriven, Vaiter)

- SC with

- Improved sparsity:

- Uniform [Pensky]

- Exponential [Chi, Xu]

Can handle the sparse case

when                             !!

Sparse and smooth: intuitively, the smoother the data, the sparser it could be...

Remember we already had

Exponential 
performs better in 
practice, and      is 
easier to choose 
than



Sparse and smooth…?

Thm (Keriven, Vaiter)

- SC with

- Improved sparsity:

- With proba                    :

- Uniform [Pensky]

- Exponential [Chi, Xu]

Can handle the sparse case

when                             !!

Sparse and smooth: intuitively, the smoother the data, the sparser it could be...

Remember we already had

Exponential 
performs better in 
practice, and      is 
easier to choose 
than



Normalized Laplacian

In practice, the normalized Laplacian works better.

- No real explanation (some hints…)

- Here we show that it’s not worse, but require (very slightly) stronger hypothesis

- The proof has interesting by-products...
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Thm (Keriven, Vaiter)

- SC with

- Sparsity:

- With proba                    :

In practice, the normalized Laplacian works better.

- No real explanation (some hints…)

- Here we show that it’s not worse, but require (very slightly) stronger hypothesis

- The proof has interesting by-products...

The multiplicative constant 
is lower-bounded !
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Sketch of sketch of proof
Proof is based on spectral norm concentration

+ classical “Davis-Kahan”-based perturbation analysis
+ almost-optimal k-means

Useful in many other contexts !

Summary (valid for any matrix with Bernoulli entries) May not be the best criterion...
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Conclusion and outlooks

● We showed a theoretical link between smoothness and sparsity in dynamic SC

● As a by-product, obtained best spectral concentration for normalized Laplacian

Keriven, Vaiter. Sparse and Smooth: improved guarantees for 
Spectral Clustering in the Dynamic Stochastic Block Model. 
arXiv:2002.02892 

Outlooks

● Choice of forgetting factor in practice?
● Theoretical bounds-based methods do not work in practice…

● Sparse, constant smoothness analysis
● Some conjectures from statistical physics
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