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Training GNNs
Goal: theoretical properties of GNNs on large graphs

Output of a GNN with only graph structure as input, 

on two different graphs that “look the same”

● When are two large graphs “similar” ? Does a GNN give “similar” outputs ?

● In this talk: (some) properties of GNNs on large random latent-position models of graphs
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● As powerful as WL-test to distinguish graph isomorphism [Xu et al. 2018]

● Can be made as powerful as k-WL-test… [Maron et al. 2019]

● Stability to input change

● CNN (translation-invariant): robustness to deformation [Mallat, Bruna, Bietti, Mairal]

What is a meaningful 
“deformation” for a graph ?

What about “large” graphs ? 
(never isomorphic...)

● GNN: stability to discrete graph metrics [Gama et al. 2019]
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Latent position model
(W-random graphs, kernel random graphs...)

Node featuresLatent variables

Dense

Relatively sparse

Sparse

● Erdos-Rényi

● Stochastic Block Models

● Gaussian kernel

● Epsilon-graphs

● Etc...

Connectivity kernel
Sparsity level:

NB: all the above can be formulated with translation-invariant kernels
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GNN convergence

Filters with normalized 
Laplacian operator

Continuous Graph Neural Networks

● Propagate function over latent space

Thm (Non-asymptotic convergence)

If                           , with probability                 , the deviation between discrete and 

continuous GNN is at most

Polynomial graph filters
with normalized Laplacian

(Spectral) Graph Neural Networks

● Propagate signal over nodes

By default equivariant, final pooling for invariant By default “continuously” equivariant, final integration for invariant

NB: Thanks to normalized 
Laplacian, the limit does 
not depend on        but the 
rate of convergence does...
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Random Graphs: stability

Thm (Stability, simplified)

For translation-invariant kernels, if:

●          is replaced by                                             , or

●          is replaced by                        (and     is translated), or

●          is replaced by

Then, the deviation of c-GNN is bounded by

Latent position models allow to define intuitive geometric deformations

Deformation of distribution Deformation of kernel

Outlooks: approximation 
power, generalization, 
optimization, other RG 
models...
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