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Graphs ?
A Graph                    is formed by:
● Nodes (or vertices) 
● Edges

Can include:
● Node features
● Edges features
● Directed or undirected edges

A graph is:
● A purely mathematical object!
● A principled way to represent many types of 

complex data (eg. any type of network)
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Graphs: examples

Knowledge graph

Computer network

Brain connectivity network

Protein interaction 
network

Gene regulatory network

Internet

Molecule
Social network

Transportation network
Scene understanding network

3D mesh
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Graphs: examples

Knowledge graph

Computer network

Brain connectivity network

Protein interaction 
network

Gene regulatory network

Internet

Molecule
Social network

Transportation network
Scene understanding network

“if all you have is a hammer, 
everything looks like a nail”3D mesh

2/29



 

Graphs: notations
A graph is usually represented by
● An adjacency matrix
● (Optionally) node/edge feature matrices
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Graphs: notations
A graph is usually represented by
● An adjacency matrix
● (Optionally) node/edge feature matrices

A is usually sparse, (lots of 0s), so 
fast to handle with dedicated tools

3/29



 

Machine learning… on graphs
Machine learning on graphs comes in many flavors

4/29



 

Machine learning… on graphs
Machine learning on graphs comes in many flavors
● Supervised/semi-supervised:

● Graph classification: labelled graphs -> label new graph
● Molecule classification, drug efficiency prediction

4/29



 

Machine learning… on graphs
Machine learning on graphs comes in many flavors
● Supervised/semi-supervised:

● Graph classification: labelled graphs -> label new graph
● Molecule classification, drug efficiency prediction

● Node (or edge) classification: labelled nodes -> label other nodes
● Advertisement, protein interface prediction

4/29



 

Machine learning… on graphs
Machine learning on graphs comes in many flavors
● Supervised/semi-supervised:

● Graph classification: labelled graphs -> label new graph
● Molecule classification, drug efficiency prediction

● Node (or edge) classification: labelled nodes -> label other nodes
● Advertisement, protein interface prediction

● Unsupervised (... also semi-supervised):
● Community detection: one graph -> group nodes

● Social network analysis

4/29



 

Machine learning… on graphs
Machine learning on graphs comes in many flavors
● Supervised/semi-supervised:

● Graph classification: labelled graphs -> label new graph
● Molecule classification, drug efficiency prediction

● Node (or edge) classification: labelled nodes -> label other nodes
● Advertisement, protein interface prediction

● Unsupervised (... also semi-supervised):
● Community detection: one graph -> group nodes

● Social network analysis
● Link prediction: one graph -> potential new edge?

● Recommender systems

4/29



 

Machine learning… on graphs
Machine learning on graphs comes in many flavors
● Supervised/semi-supervised:

● Graph classification: labelled graphs -> label new graph
● Molecule classification, drug efficiency prediction

● Node (or edge) classification: labelled nodes -> label other nodes
● Advertisement, protein interface prediction

● Unsupervised (... also semi-supervised):
● Community detection: one graph -> group nodes

● Social network analysis
● Link prediction: one graph -> potential new edge?

● Recommender systems
● But also: dynamic graph (node, edge) prediction (physical systems simulation), 

graph generation (drug design)...
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ML on graphs: Graph Neural Networks

Graph Neural Networks (GNN) are “deep architectures” to do ML on graphs.
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ML on graphs: Graph Neural Networks

Graph Neural Networks (GNN) are “deep architectures” to do ML on graphs.
● Very (very) trendy right now!

● A lot of good papers, a lot of not-so-good papers
● a lot of “noise”! (review papers coming out regularly)

● Does NOT work that well! (compared to other “deep learning”)
● Simple methods may perform better, people might not test them...
● Room for improvement! (many interesting challenges)
● No “ImageNet moment” yet for GNNs
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ML on graphs: some material

  
            

● (Some) GNN reviews
● Bruna et al. Geometric Deep Learning: Going beyond Euclidean data (2017)
● Wu et al. A Comprehensive Survey on Graph Neural Networks. (2020)
● Hamilton. Graph Representation Learning (2020) (book)
● Dwivedi et al. Benchmarking Graph Neural Networks. (2020)
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● (Some) GNN reviews
● Bruna et al. Geometric Deep Learning: Going beyond Euclidean data (2017)
● Wu et al. A Comprehensive Survey on Graph Neural Networks. (2020)
● Hamilton. Graph Representation Learning (2020) (book)
● Dwivedi et al. Benchmarking Graph Neural Networks. (2020)

● Datasets
● Stanford Large Network Dataset Collection. snap.stanford.edu/data
● Hu et al. Open Graph Benchmark (2020)

● Python Libraries
● Networkx (medium-sized graph manipulation, visualization)
● Pytorch Geometric (pytorch-based GNN)
● Deep Graph Library (Tensorflow-based GNN)

● Online material, etc.
● Sergey Ivanov. GraphML Newsletter. graphml.substack.com
● M. Bronstein’s posts on Medium: medium.com/@michael.bronstein 
● Xavier Bresson’s talks on Youtube (search his name)
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Outline

From Deep Convolutional Networks to GNNs

Some recent (theoretical) results
On small graphs
On large graphs
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Deep Neural Networks
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linearities and (differentiable) non-
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Deep Neural Networks

State-of-the-art in: most everything ? (with sufficient data and domain knowledge…)
• Computer vision
• Speech recognition
• Natural Language Processing
• Reinforcement learning
• Etc etc etc. How do we extend them to Graphs?

No node ordering: must be invariant to 
relabelling of the nodes (graph isomorphism)

“Deep” learning: alternates between 
linearities and (differentiable) non-
linearities
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ConvNets: convolution?
● The building blocks of Deep (Convolutional) Neural Networks are convolutions.

Convolutions are local pattern-matching linear operators.
Usual filter banks (wavelets) use fixed filters, in ML the filters are (usually) learned.
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ConvNets: multiscale
● How to detect complex “high-level” shapes?

● Trying every pattern is impossible! -> stack filters (and subsampling) to make it hierarchical.
● Naively stacking convolutions is still linear... -> add non-linear functions between each scale (layer)

● Deeper layers are indeed activated by “higher-level” patterns.
Zeiler and Fergus. Visualizing and Understanding Convolutional Networks (2013)

● DNN are robust to (small) spatial deformation.
Bietti and Mairal. Group invariance, stability to deformations, and complexity of deep convolutional representations. (2019)
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Convolution on graphs?
How to perform convolution of graphs?

Two (main) problems to “pattern-
matching” on graphs:

● No inherent node ordering

● No fixed neighborhood size
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Fourier transform on graphs: Laplacian
How to define the Fourier transform on graphs?

● (On the torus) complex exponentials are eigenfunctions of the Laplacian
● Laplacian operators (matrix) on graphs can be defined!

● Dirichlet energy                                     , and                 where

● Normalized Laplacian (eigenvalues between 0 and 2)

13/29



 

Fourier transform on graphs

14/29



 

Fourier transform on graphs
Diagonalize the Laplacian:

14/29



 

Fourier transform on graphs

Eigenvalues: “frequencies”

Diagonalize the Laplacian:

14/29



 

Fourier transform on graphs

Eigenvalues: “frequencies”

Eigenvectors: “Fourier modes”Diagonalize the Laplacian:

14/29



 

Fourier transform on graphs

Eigenvalues: “frequencies”

Eigenvectors: “Fourier modes”

● Fourier transform
● Inverse Fourier transform

Diagonalize the Laplacian:
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Filtering on graphs

● Compute Fourier transform

How to filter a signal     ?

Chung. Spectral Graph Theory. (1999)
Shuman et al. The Emerging Field of Signal Processing on Graphs. (2013)
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Filtering on graphs
● Frequencies and Fourier modes are graph-dependent

● Use a function of the frequencies

● Diagonalization is (very) costly on large graphs!
● Use polynomial filters

Ex: Low-pass

● Filter are “localized”
● Can make use of efficient sparse matrix-

vector multiplication

Poly. Approx. of low-pass

Hammond et al. Wavelets on Graphs via Spectral Graph Theory. (2011)
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(Spectral) GNNs
Spectral GNN

Henaff et al. Deep 
Convolutional Networks on 
Graph-Structured Data (2015)
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(Spectral) GNNs

● Final layer: output signal over nodes (for node classif) or perform pooling (for graph classif)

● Early architectures include “graph coarsening” (subsampling) but difficult problem

● Need input node feature       . No real solution otherwise...

Non-lin. function (eg ReLU)
Trainable (Polynomial) Filters

Trainable Bias

Spectral GNN
Henaff et al. Deep 
Convolutional Networks on 
Graph-Structured Data (2015)

Defferrard et al. Convolutional Neural Networks on 
Graphs with Fast Localized Spectral Filtering (2016)

Duong et al. On Node Features for Graph Neural Networks (2019)
Vignac et al. Building powerful and equivariant graph neural networks with structural message-passing (2020)
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“Modern” GNNs are often built around a message-passing interpretation. 

At each layer, each node 
receives “messages” from its 
neighbors.

● Messages are treated as a set: no node ordering!
● When AGGREGATE is SUM: order-1 polynomial filter!! (but 

can be more general: eg MAX or MIN, Attention-based...)

● Tip of the iceberg: approx. 100 GNN papers a month on arXiv
● Despite 1000s of papers, same ideas coming round: be critical, learn to spot incremental changes!

Gilmer et al. Neural Message Passing for Quantum Chemistry. (2017)
Kipf et al. Semi-Supervised Learning with Graph Convolutional Networks (2017)
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● Classical DNN are “universal”: as the number of neurons grow, they can approximate 

any continuous function. What about GNNs? Hornik et al. Multilayer Feedforward Networks are Universal Approximators (1989)
Cybenko. Approximation by superpositions of a sigmoidal function (1989)

● “Graph-classif” GNN are insensitive to relabelling of the nodes, aka graph isomorphism
● They are permutation-invariant. “Node-classif” GNN are permutation-equivariant

Graph isomorphism problem:
● No known polynomial algorithm. Best:
● Not known if NP-complete
● Might be a class of complexity on its own! Babai. Graph Isomorphism in Quasipolynomial Time (2015)
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● A classical algorithm for graph isomorphism is the Weisfeiler-Lehman test.

● Starts with arbitrary labelling of nodes (among discrete set)
● Propagate labels with injective agg. function, repeat n times, and compares final sets of labels.
● Can distinguish a “large-class” of non-isomorphic graphs (but not all!)

By construction, message-passing GNNs are not more powerful than WL test, and 
can be as powerful if AGGREGATE is injective (sufficient number of neurons).

Xu et al. How Powerful are Graph Neural Networks? (2019)

Weisfeiler and Lehman. A reduction of a 
graph to a canonical form and an algebra 
arising during this reduction (1968)
Babai and Kucera. Canonical labelling of 
graphs in linear average time (1979)

WL fails here...
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Beyond WL...
● GNN expressivity can be improved...

● to be as powerful as “higher-order WL”

● by giving nodes unique/random identifiers

● by counting/sampling substructures

● True universality can be attained by allowing unbounded 
“tensorization” order
● Far too expensive to implement in practice...

● Limitations...
● As with classical NNs, universality is hardly related to practical results

● Real graphs are never even close to being isomorphic!

Maron et al. Provably Powerful Graph Networks (2019)
Chen et al. On the equivalence between graph isomorphism 
testing and function approximation with GNNs (2019)

Vignac et al. Building powerful and equivariant graph 
neural networks with structural message-passing (2020)

Bouritsas et al. Improving Graph Neural Network 
Expressivity via Subgraph Isomorphism Counting (2020)

Maron et al. On the Universality of Invariant Networks (2019)
Keriven and Peyré. Universal Invariant and Equivariant Graph 
Neural Network. (2019)

New Stone-Weierstrass 
theorem!

Dwivedi et al. Benchmarking Graph Neural Networks (2020)
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Large graphs?

● CNN (translation-invariant) are robust to spatial deformation

● GNN: stability to discrete graph metrics
● Difficult to interpret, difficult to define for different-sized graphs
● What’s a meaningful notion of deformation for a graph?

● Large graphs may “look the same”, but are never isomorphic.

Keriven, Bietti, Vaiter. Convergence and Stability of Graph Convolutional 
Networks on Large Random Graphs. NeurIPS 2020 (Spotlight)

We use models of large random 
graphs to study GNNs.

24/29



 

Random graphs models
Long history of modelling large graphs with 
random generative models

Chung and Lu. Complex Graphs and Networks (2004)
Penrose. Random Geometric Graphs (2008)
Lovasz. Large networks and graph limits (2012)
Frieze and Karonski. Introduction to random graphs (2016)
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Random graphs models
Long history of modelling large graphs with 
random generative models

Latent position models (W-random graphs, kernel random graphs...)

Node featuresUnknown latent variables

Dense
Relatively sparse

Sparse

Connectivity kernel

Chung and Lu. Complex Graphs and Networks (2004)
Penrose. Random Geometric Graphs (2008)
Lovasz. Large networks and graph limits (2012)
Frieze and Karonski. Introduction to random graphs (2016)

Includes Erdös-Rényi, 
Stochastic Block Models, 
Gaussian kernel, epsilon-
graphs...

25/29



 

Discrete vs. continuous
As the number of nodes grows, the GNN will converge to a limit “continuous” model.
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Discrete vs. continuous

Filters with normalized 
Laplacian operator

Continuous Graph Neural Networks
● Propagate function over latent space

Polynomial graph filters
with normalized Laplacian

(Spectral) Graph Neural Networks
● Propagate signal over nodes

As the number of nodes grows, the GNN will converge to a limit “continuous” model.

Output
● Signal over nodes (permutation-equivariant)
● Single vector (permutation-invariant)

Output
● Function (“continuous” permutation-equivariant)
● Vector (“continuous” permutation-invariant)
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Continuous limit of GNNs

Thm (Non-asymptotic convergence)
If                           , with probability            , the “deviation” between 
discrete and continuous GNN is at most
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Continuous limit of GNNs

Thm (Non-asymptotic convergence)
If                           , with probability            , the “deviation” between 
discrete and continuous GNN is at most

NB: Thanks to normalized 
Laplacian, the limit does not 
depend on        but the rate 
of convergence does...

Direct norm for permutation-invariant, MSE for permutation-equivariant
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Stability of continuous GNNs
Latent position models allow to define intuitive geometric deformations

Deformation of distribution Deformation of kernel
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Thm (Stability, simplified)
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Stability of continuous GNNs

Thm (Stability, simplified)
For translation-invariant kernels, if:
●      is replaced by                                   
●      is replaced by                   (and     is translated)
●      is replaced by
Then, the deviation of c-GNN is bounded by

Latent position models allow to define intuitive geometric deformations

Deformation of distribution Deformation of kernel

Outlooks: approximation power, generalization, 
optimization, other RG models...
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Conclusion
● Graph ML and GNN are now “first-class citizen” in ML
● Mostly “engineering/computer-science” driven, some blind spots (statistics, probability...)
● Still a lot to do! (“low-hanging fruits”)
● The community is fast-paced and growing exponentially, important to have a critical eye!
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● Still a lot to do! (“low-hanging fruits”)
● The community is fast-paced and growing exponentially, important to have a critical eye!

Don’t hesitate to contact me if 
you’re interested in the topicnkeriven.github.io

● Many feel like the “message-passing” paradigm is coming to an end
● “Real” challenging applications/datasets start to emerge, “ImageNet moment” may be around 

the corner (or not?)
● Incredibly many open questions (including many in “non-deep” graph ML!)
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