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Graphs: useful structures for data processing

• Social Networks 

• Sensors’ data 

• Transportations

Intro. Optimal transport of attributed graphs Hierarchical and Unsupervised Graph Representation Learning Ccl

Motivation: Attributed graphs
• A general model for structured data
• (a.k.a. Graph Signals in GSP)

• Social networks ; Images, point clouds ; molecules ; ...

Attributed Graphs
What ? data structure for highly structured data:

● Social network
● Molecules
● Call-graph of malware
● Images (grid shaped graph)

Source: Yunsheng Bai, Hao Ding, Yang Qiao, Agustin Marinovic, Ken Gu, Ting Chen,Yizhou Sun, and Wei Wang. 
Unsupervised inductive whole-graph embedding by preserving graph proximity.arXiv preprint arXiv:1904.01098, 
2019.

Source: Michael Edwards and Xianghua Xie. Graph based convolutional neural network.
              CoRR, abs/1609.08965, 2016.

Source: Awesome Graph Classification
              https://github.com/benedekrozemberczki/awesome-graph-classification
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• 2D images 

• 3D Points  clouds 

• Other geometric  

and/or irregular  shapes

• Chemistry 

• Physics



Setting: Attributed Graphs

• In the general case, nodes and/or edges can carry information: 

❖ Edges = existence of some relationship  

❖ Nodes = Attributes, or Features / Signals 

/506/506
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Les nœuds et les arêtes peuvent porter une information
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• Attribute matrix

• Adjacency matrix



Many Machine Learning tasks for Data on Graphs

• Learn to classify Nodes

Supervised Tasks

/508/508

Apprentissage sur graphe
Supervisé : Apprendre à partir de données étiquetées.

Classification de nœuds

Etiquette rouge

Etiquette bleue

Quelle est 
l’étiquette ?

Classification de graphes

Etiquette bleue

Etiquette rouge

Quelle est 
l’étiquette ?
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• Learn to classify Graphs



Many Machine Learning tasks for Data on Graphs

• Learn to find clusters (or modules, 
communities,…)

Unsupervised Tasks

• Learn to cluster collection of graphs

/509/509

Apprentissage sur graphe
Non Supervisé : Apprendre à partir de données non étiquetées.

Clustering de nœuds Clustering de graphes

Critère de séparation ?

Critère de séparation ?

Il existe deux classes d’éléments

/509/509

Apprentissage sur graphe
Non Supervisé : Apprendre à partir de données non étiquetées.

Clustering de nœuds Clustering de graphes

Critère de séparation ?

Critère de séparation ?

Il existe deux classes d’éléments

• Note: more general features  -> small-world, scale-free,…       [see Complex Networks]



Many Machine Learning tasks for Data on Graphs

• For Visualisations or low-dim embeddings 

(Laplacian Maps, LLE, ForceAtlas, t-SNE, 
UMAP,…)

Representation of graphs : Embeddings

• For high-dimensional embeddings 

Chapter 3

Neighborhood
Reconstruction Methods

This part of the book is concerned with methods for learning node embeddings.
The goal of these methods is to encode nodes as low-dimensional vectors that
summarize their graph position and the structure of their local graph neigh-
borhood. In other words, we want to project nodes into a latent space, where
geometric relations in this latent space correspond to relationships (e.g., edges)
in the original graph or network [Ho↵ et al., 2002] (Figure 3.1).

In this chapter we will provide an overview of node embedding methods for
simple and weighted graphs. Chapter 4 will provide an overview of analogous
embedding approaches for multi-relational graphs.

Figure 3.1: Illustration of the node embedding problem. Our goal is to learn an
encoder (enc), which maps nodes to a low-dimensional embedding space. These
embeddings are optimized so that distances in the embedding space reflect the
relative positions of the nodes in the original graph.

29

From [Hamilton., “Graph Representation Learning“,  2020]From [Tremblay & Borgnat,  2015]



Low Level task: (Graphs) Representation Learning

• Representation Learning = discover, or learn, adequate 
representations for studied data so as to extract information

From [Goodfellow et al., “Deep Learning“,  2016]

• Machine Learning in one sentence: build a map from data  to decision  x y

y = ℱ(x)

• Machine Learning in the good all times 

ℱ = ℱ(x)decision ∘ ℱ(x)features
learnt from data

hand-crafted using domain knowledge

• Machine Learning with Representation Learning / Deep Learning 

           /     ℱ = ℱdecision ∘ ℱfeatures ℱ = ℱdecision ∘ ℱlayer d ∘ ⋯ℱlayer 1
All learnt from data

[From Pierre Vandergheynst’ talk]



• For Graphs, Representation learning can be summarised as: 

❖ For Collection of Graphs

/5010/5010

Objectif de la thèse 

Apprendre des représentations

Appliquer des algorithmes classiques sur ces représentations

Graphes Nœuds 

De dimension fixée

Problème déjà abordé dans la littérature 

Application à des cas de figure inédits 

Proposition de réponse à certaines limitations

❖ For Nodes in a Graph

/5010/5010

Objectif de la thèse 

Apprendre des représentations

Appliquer des algorithmes classiques sur ces représentations

Graphes Nœuds 

De dimension fixée

Problème déjà abordé dans la littérature 

Application à des cas de figure inédits 

Proposition de réponse à certaines limitations❖ Often for graphs: agglomerate 
Nodes representations

Low Level task: Graphs Representation Learning



• Direct comparisons of Graphs is hard / computationally challenging (e.g.; GED)

Some Associated Difficulties

/5012/5012

Difficultés de l’apprentissage sur graphes
Les algorithmes de base de l’apprentissage s’appuient sur des mesures de similarités ou de distances  

(K-moyennes, K-plus proches voisins, Régression logistique, etc.) 

Il est difficile de comparer deux nœuds

Les graphes possèdent une structure locale inhomogène

Il est difficile de comparer deux graphes

Un graphe est défini à une permutation près 

Il faut un moyen rapide de caractériser les graphes et/ou leurs nœuds 
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Un graphe est défini à une permutation près 

Il faut un moyen rapide de caractériser les graphes et/ou leurs nœuds 

• Node-level: local inhomogeneities in structure => hard to compare two nodes

• Graph-level: possible isomorphism => hard to compare (even to find equality) two graphs

Low Level task: Graphs Representation Learning



Learning and Graphs: Graph Neural Networks

• From ~2015 on: an ever growing interest to Deep models for Graph Structures  

 

then Stack them =>  multilayer (or deep) neural network

ℱ(x)layer (l) = σ(W(l)x+b(l))

/5013/5013

Réseaux de neurones sur graphes
Développement des réseaux de convolution sur graphes

Motivation : les nombreux succès des réseaux de convolution sur images (CNN)

Graphe à l’étape (l)

Principe

Utilisation des caractéristiques extraites  pour effectuer des  tâches d’apprentissage 

Efficaces mais limités par rapport aux CNN

Saturation des performances

Difficultés à caractériser les graphes globalement 

Graphe à l’étape (l+1)

weighted average of 
input + bias/offset

non-linear activation function

• For Graphs: One needs to combine information from irregular neighbourhoods 
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Learning and Graphs: Graph Neural Networks

• A big success in deep learning:reduction of parameters thanks to convolutions 

(the same weights are re-used in a translation invariant way) 

• For Graphs ? Use translations from Graph Signal Processing 
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Introduction GSP - basics GSP ex.ples Multiscale Community Mining GSP - clustering GSP - filterbanks Ccl

Generalized translations
[Shuman, Ricaud, Vandergheynst, 2014]

• Classical translation (continuous world)

(T⌧ g) (t) = g(t � ⌧) =

Z

R
ĝ(⇠)e�i2⇡⌧⇠e�i2⇡t⇠d⇠

• Graph translations by fundamental analogy:

(Tnf ) (a) =
N�1X

i=0

f̂ (i)�⇤
i (n)�i(a)

• Example on the Minnesota road networks

(a) (b) (c)

Figure 7: The translated signals (a) T200f , (b) T1000f , and (c) T2000f , where f , the signal shown in Figure 1(c), is a normalized

heat kernel satisfying f̂(��) = Ce�5�� . The component of the translated signal at the center vertex is highlighted in magenta.

4.3. Properties of the Generalized Translation Operator
Some expected properties of the generalized translation operator follow immediately from the generalized

convolution properties of Proposition 1.

Corollary 1: For any f, g 2 RN and i, j 2 {1, 2, . . . , N},
1. Ti(f � g) = (Tif) � g = f � (Tig).

2. TiTjf = TjTif .

3.
PN

n=1(Tif)(n) =
p

Nf̂(0) =
PN

n=1 f(n).

However, the niceties end there, and we should also point out some properties that are true for the
classical translation operator, but not for the generalized translation operator for signals on graphs. First,
unlike the classical case, the set of translation operators {Ti}i�{1,2,...,N} do not form a mathematical group;
i.e., TiTj 6= Ti+j . In the very special case of shift-invariant graphs [24, p. 158], which are graphs for which
the DFT basis vectors (9) are graph Laplacian eigenvectors (the unweighted ring graph shown in Figure 5(c)
is one such graph), we have

TiTj = T��
(i�1)+(j�1)

�
mod N

�
+1

, 8i, j 2 {1, 2, . . . , N}. (26)

However, (26) is not true in general for arbitrary graphs. Moreover, while the idea of successive translations
TiTj carries a clear meaning in the classical case, it is not a particularly meaningful concept in the graph
setting due to our definition of generalized translation as a kernelized operator.

Second, unlike the classical translation operator, the generalized translation operator is not an isometric
operator; i.e., kTifk2 6= kfk2 for all indices i and signals f . Rather, we have

Lemma 1: For any f 2 RN ,

|f̂(0)|  kTifk2 
p

N�ikfk2 
p

Nµkfk2. (27)

Proof.

kTifk2
2 =

NX

n=1

�
p

N
N�1X

�=0

f̂(��)�
�
� (i)��(n)

�2

= N
N�1X

�=0

N�1X

��=0

f̂(��)f̂(���)��
� (i)�

�
��(i)

NX

n=1

��(n)���(n)

= N
N�1X

�=0

|f̂(��)|2 |��
� (i)|

2 (28)

 N�2
i kfk2

2. (29)
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p. 20 [See Shuman et al., SP Mag 2013]

• Convolutional GNNs:  convolutions are defined in the Spectral domain  (  = Laplacian)L

Convolutional GNNs

8

First truly scalable GNNs

Generate GNNs that parameterised spectral graph filters
<latexit sha1_base64="Q5PzvnRvG9F4TB5tcJuEJvKonQg="></latexit>

W = UD⇥U
T #nodes shared free parameters Θ

U = eigenvectors of shift operator

<latexit sha1_base64="B2ioZ5BdFyBpXQRjNbYVOiebH/g="></latexit>

W = UG⇥(⇤)U
T

<latexit sha1_base64="PEzpaxmAq8RkIAsOkaKdXSgOmxQ="></latexit>

W = P⇥(L)

<latexit sha1_base64="d8R8+HaxbYZtPG/eawXt7QD5P1Y="></latexit>

Fith node(x) = �(wi
Tx+ bi)

<latexit sha1_base64="lxdU3wi8mS4G67vELcDt+/pIg74="></latexit>

wi = [P⇥(L)]i
same parameters for all nodes

Special form, polynomial of shift operator

Parametric form with O(1) parameters Θ

[Defferrard et al., 2015]

[From Pierre Vandergheynst’ talk]



Learning and Graphs: Graph Neural Networks

• Why care ? Gives a trend to powerful methods Citations of GCN [Kipf & Welling, 2017]

• Strong applications : 

• Drug Discovery ChemProp [Cell 2020];  

• Drug repurposing [see S. Chepuri, 2020: Dr-COVID: graph neural networks for SARS-CoV-2 drug 
repurposing] 

• OpenCatalyst: discover new molecules that are catalysts for Chemistry (e.g., for fuel conversion)

• What we will not do: propose a new GNN architecture  

•Alphafold2 and Transformers use graphs

Citations of The Graph Neural Network Model [Scarselli et al., 2009]]



Learning and Graphs: Graph Neural Networks

• What we will not do: propose a new GNN architecture   

• (too) Many exist and there are limits associated to GNNs / GCNs, and already studied 

• S. Luan et al., “Break the ceiling: Stronger multi-scale deep graph convolutional 
networks.“ NeurIPS 2019 

• K. Xu et al. “How powerful are Graph Neural Networks », ICLR 2019 

• A. Loukas et al. “What graph neural networks cannot learn: deepth vs. width“ ICLR 2020 

• Z.  We et al. "A comprehensive survey on graph neural networks.“  IEEE Trans. NNL 2020 

and still counting…

• What we will do: think of GNNs/GCNs as element to model a Graph Representation



The Many Sides of Graph Representation Learning
Some Recent examples from our works

Intro. Optimal transport of attributed graphs Hierarchical and Unsupervised Graph Representation Learning Ccl

Today: recent contributions on two research questions

• Is it possible to align an attributed graph to another ?
e.g., so as to classify the 2nd from known classes of the 1st

[A. Barbe et al, ECML 2020/09]

• Is it possible to embed attributed graphs
with an inductive & trainable representation ?

[L.. Béthune, Y. Kaloga et al, Algorithms 2020/08]

p. 4
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• How to learn distances  between Attributed Graphs ?
[Y. Kaloga, A. Habrard,  P. Borgnat, 2022]

Small distance
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Large distance

For classification

For clustering

Joint work with M. Sebban, R. Gribonval, P. Gonçalves
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Abstract: We propose a novel algorithm for unsupervised graph representation learning with
attributed graphs. It combines three advantages addressing some current limitations of the literature:
(i) The model is inductive: it can embed new graphs without re-training in the presence of new
data; (ii) The method takes into account both micro-structures and macro-structures by looking at
the attributed graphs at different scales; (iii) The model is end-to-end differentiable: it is a building
block that can be plugged into deep learning pipelines and allows for back-propagation. We show
that combining a coarsening method having strong theoretical guarantees with mutual information
maximization suffices to produce high quality embeddings. We evaluate them on classification tasks
with common benchmarks of the literature. We show that our algorithm is competitive with state of
the art among unsupervised graph representation learning methods.

Keywords: graph representation learning; Graph2Vec; graph convolutional networks;
graph coarsening; unsupervised learning; mutual information maximization

1. Introduction

Graphs are a canonical way of representing objects and relationships among them. They have
proved remarkably well suited in many fields such as chemistry, biology, social sciences or computer
science in general. The connectivity information (edges) is often completed by discrete labels or
continuous attributes on nodes, resulting in so-called attributed graphs. Many real-life problems
involving high dimensional objects and their links can be modeled using attributed graphs.

Machine learning offers several ways to solve problems such as classification, clustering or
inference, provided that a sufficient amount of training examples is available. Yet, the most classical
frameworks are devoted to data living in regular spaces (e.g., vector spaces), and they are not suitable
to deal with attributed graphs. One way to overcome this issue is to represent or encode the attributed
graphs in such a way that usual machine learning approaches are efficient. A recent take on that is
known as graph representation learning [1]: the graphs are embedded in a fixed dimensional latent
space such that similar graphs share similar embeddings.

Three properties are desirable in order for a method of attributed graph representation learning
to be widely applicable and expressive enough. We expect a method to be: I. unsupervised because
labels are expensive, and not always available; II. inductive so that computing the embedding of an

Algorithms 2020, 13, 206; doi:10.3390/a13090206 www.mdpi.com/journal/algorithms
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Figure 5. Single level of the pyramid. Local information x
l(u) centered around node u is extracted from

graph g
l . The graph is coarsened to form a new graph g

l+1. There, g
l+1(P(u)) captures information

at a larger scale, centered on node P(u). The pair (x
l(u), g

l+1(P(u))) is used as positive example in
the negative sampling algorithm, and it helps to maximize mutual information between global and
local view.

4.3. Handling Continuous Node Attributes with Truncated Krylov

The WL algorithm uses a discrete hash function in Equation (2), with the issue that nodes sharing
similar but not quite identical neighborhoods are considered different. If the differences are caused by
noise in computations or measures, they should not result in much differences in the labels. For that,
we relax the injectivity property of WL by replacing it by a function with a continuity property.

It is known that Graph Neural Networks (GNN) have a discriminative power at least equivalent
to WL [32,34,35]. We require the opposite, and we emphasize the importance of not having a too strong
discriminator. We use the extension of the Gromov–Wasserstein distance to attributed graphs, that
requires the mapping to preserve both edge weights and node attributes. The resulting distance is a
special case of the Fused Gromov–Wasserstein distance [36].

Definition 5 (Fused Gromov–Wasserstein distance.). Let g1 = (V1, A1, Z1) and g2 = (V2, A2, Z2) be two

attributed graphs in G.

dG(g1, g2) = minp2P Âu,u0 ,v,v0 p(u, v)p(u0, v
0)
�
|A1(u, u

0)� A2(v, v
0)|+ |Z1(u)� Z2(v)|+ |Z1(u0)� Z2(v0)|

�
(11)

where P is the collection of measures over V1 ⇥ V2 whose marginals are discrete uniform distributions over V1
and V2.

This definition allows us to state the continuity of GNN under this metric.

Lemma 1 (GNN continuity.). GNNs with continuous activation function are continuous on the topological

space induced by the metric dG.

Proof in Appendix A.
GNNs are usually parameterized functions learnable with stochastic gradient descent, and hence

fulfill this continuity constraint. Moreover, some attributes may be irrelevant, and should be discarded,

Multiscale Representation of Graphs: 
the Hierarchical Graph2Vec Algorithm



• Several Methods for 1 graph: Node Embeddings; Node2Vec; GraphWave,…  

• Several Methods for a collection of graphs: Concatenation of Node Embeddings; 
Graph2Vec; DeepWalk; Kernels; Infograph (2020) (close to HG2V)

The Main Objectives ; Why another method ?

Multiscale Representation of Graphs: 
the Hierarchical Graph2Vec Algorithm



Multiscale Representation of Graphs: 
the Hierarchical Graph2Vec Algorithm

The properties of a graph may depend on several of its scales
❖The representation function must take into account these different scales

Graphs close structurally and/or in terms of attributes should have close representation
❖The representation function must be "continuous" in structure and attributes

Labels are expensive to acquire
❖The representation function should operate even without a label: unsupervised learning

More and more data and more and more energy-intensive training procedures 
❖It must be possible to analyse a large number of graphs 
❖The representation function must be able to represent graphs never seen before: inductivity

 able In addition: able to specifically focus on certain aspects for the representation
❖The function must be end-to-end differentiable

The Main Objectives ; Why another method ?



• From Attributed Networks to Euclidean Vectors 

• Obtained Representations can be used for learning

HG2V: a Classical General Framework



HG2V: State of the art (partial view)

• In Machine Learning / Computer Science 

✦ Heuristic methods measuring similarities between graphs 

✦ Indirect representations through scalar products / kernel trick 

✦ Quadratic Methods for kernels 

• Approaches in Deep Learning 

✦ Neural networks for encode graph features 

✦ Auto-Encoders 

✦ Negative sampling 

➡  Obtained Representations can be used for learning                        

For HG2vec = we require the properties of previous slide

• Insights from Graph Signal Processing 

✦ Interplay between Structure (graph) & 
Attributes (signals / features) 

✦ Multiscale view is required  

Algorithms 2020, 13, 206 6 of 22

Table 1. Key properties of methods (related or proposed) for graph embedding. N is the number of
graphs. Symbol 7 for complexity (inference) means the method is transductive (and not inductive) and
one needs to use the same time as for training. Symbol 3 for supervised means labels are required to
learn a representation (by back-propagating classification loss).

Method Continuous
Attributes

Complexity
(Training)

Complexity
(Inference)

End-to-End
Differentiable Supervised

Kernel methods, e.g.,
WL-OA [27], WWL [4] 3 O(N

2)* O(N)* 7 7

Graph2Vec [2] 7 O(N) 7 7 7

GIN [32], DiffPool [17],
MinCutPool [18] 3 O(N) O(1) 3 3

HG2V (Section 4),
Infograph [13] 3 O(N) O(1) 3 7

* Can be improved with Nystrom approximation or Random Fourier Features.

4.1. Loukas’s Coarsening

In this section we detail the main drawback of WL procedure, and the benefit of graph coarsening
to overcome this issue. For simplification, we will put aside the node attributes for a moment, and
only focus on the graph structure. Even in this simplified setting, WL appears to be sensitive to
structural noise.

4.1.1. Wesfeiler-Lehman Sensibility to Structural Noise

The ability of WL to discriminate all graph patterns comes with the incapacity to recognize as
similar a graph and its noisy counterpart. Each edge added or removed can strongly perturb the
histogram of labels produced by WL. Said otherwise, WL is not a good solution to inexact graph
matching problem.

We perform experiments to evaluate the effect of adding or removing edges on different graphs.
We randomly generate 100 graphs of 500 nodes each, that belong to four categories (cycle, tree, wheel
and ladder), using the routines of NetworkX [33] library. For each generated graph g, we randomly
remove from 1 to 10 edges, sampled with independent and uniform probability, to create the graph g

0.
One may hope that such little modification over this huge edge set would not perturb excessively the
labels of WL procedure.

To evaluate the consequences of edge removal we propose to use as similarity score the intersection
over union of histogram of labels of g and g

0 at each stage 1  l  5:

S
l(g, g

0) = 100 ⇥
|histo(WLl(g)) \ histo(WLl(g

0))|

|histo(WLl(g)) [ histo(WLl(g0))|
(5)

The average similarity score S̃ l(g, g
0) over the 100 graphs is reported in Figure 2.

The similarity decreases monotonically with the number of edges removed, even when restricting
the procedure to the first stage (neighborhood of width 1). On higher stages (wider neighborhood)
the effect is even worse. On graphs with small diameter (such as wheel graph or 3-regular tree) a
significant drop in similarity can be noticed. On ladder graph and cycle, sparse graphs with huge
diameter, the effect of edge removal remains significant.



• The Weisfeiler-Lehman Test – Characterize a Graph by its Sub-Trees 

Characterize a Graph from its Nodes

WL ( l = 1) WL ( l = 2) WL ( l = 3)

• Does not work for continuous attributes –> Use Graph Neural Networks

• Does not consider Global Structures



• From Weisfeiler-Lehman  to GNN (here Conv. one) 

Characterize a Graph from its Nodes

• Can use continuous attributes (or discrete ones) 

• Continuous with respect to topology of the graph         (not explained here) 

• Discriminative power can be as good as WL (see GIN in “How Powerful are  Graph 
Neural Networks ?“ ICLR 2019) 

• GNN can be aptly stacked if one chooses a correct one (e.g., GCN of [Kipf&Welling, 
ICLR 2017] ; Truncated Krylov [Luan et al. NeurIPS 2019]

GCN

Intro. Optimal transport of attributed graphs Hierarchical and Unsupervised Graph Representation Learning Ccl

Inductive graph representation learning

• Goal: embed attributed graphs
with a multiscale, inductive & trainable representation ?

• Idea (2): generalize the Weisfeiler-Lehman approach to
continuous attributes with GCN

p. 9



• Problem with GNN: impossible to characterise several global properties,  

cf. A. Loukas et al. “What graph neural networks cannot learn: deepth vs. width“ ICLR 2020 

• Proposed architecture: use a Pooling method between GCN layers ->  Hierarchical method 

Characterize a Graph from its Nodes: the issue of Pooling and of the Global View

• Allows to change the scale from one level to another 

• Pooling can have various definition – Key point = how to cope with irregularities 

• [Loukas, 2019] Spectral pooling that keeps the structure, thanks to Laplacian Spectal 
properties of the associated pooling

GCN



• Each step preserves the global (low-pass) structures of the graph

Characterize a Graph from its Nodes: the issue of Pooling

• [Loukas, 2019] Spectral pooling that keeps the structure, thanks to Laplacian 
Spectal properties of the associated pooling

/5021/5021

Pooling de Loukas

Préserve les basses valeurs propres du Laplacien

A chaque étape on conserve les informations structurelle globales 



HG2V: Overview of the proposed method

A  Hierarchical Model

Final Representation 
of the Graph 

Nodes & 
Neighbourhoods

The whole graph



HG2V: More details of the attributes of Nodes and Neighbourhoods

/5023/5023

Gestion des attributs 

Chaque nœud possède une représentation qui permet de calculer la représentation du graphe 

Chaque voisinage de ces nœuds (de profondeur 1 ici) possède une représentation

/5023/5023

Gestion des attributs 

Chaque nœud possède une représentation qui permet de calculer la représentation du graphe 

Chaque voisinage de ces nœuds (de profondeur 1 ici) possède une représentation

• Each node has a representation per scale, that will be used in the global 
representation

• Each neighbourhood is also represented (here: neighbourhoods of level 1)



HG2V: More details about the Learning procedure = Negative sampling

• Sketch one level of the hierarchy: sampling positive examples and negative examples (sampled 
from independent prob.), we ensure that nodes  and neighbors minimize the cross-entropy  

e..g. Hjelm et al.  “Learning deep representations by mutual information estimation and maximization.   ICLR 2019



HG2V: More details about the Learning procedure = Negative sampling

• Mutual Information to be minimised

e..g. Hjelm et al.  “Learning deep representations by mutual information estimation and maximization.   ICLR 2019

• Aggregated Score as loss function / Training with usual algorithms (SGD with Adam)

• Final Representation =  concatenation of nodes’ repr. at all scales /5025/5025

Fonction objectif 

On résout ensuite le problème suivant :

La représentation finale de graphe est donnée par :

Mutual information - negative sampling :

/5025/5025

Fonction objectif 

On résout ensuite le problème suivant :

La représentation finale de graphe est donnée par :

Mutual information - negative sampling :

/5025/5025

Fonction objectif 

On résout ensuite le problème suivant :

La représentation finale de graphe est donnée par :

Mutual information - negative sampling :



HG2V: Overview of the proposed method

A  Hierarchical Model

Final Representation 
of the Graph 

Nodes & 
Neighbourhoods

The whole graph

Concatenation of the Hierarchy of 
Representations



HG2V:  Numerical experiments  — Dataset

/5027/5027

Expériences - Jeux de données 

Biologie/Chimie

Réseaux 

Synthétiques

Images 



HG2V:  Numerical experiments  — Supervised Classification with SVM

/5028/5028

Expériences – Classification avec une SVM

Performantes mais 
quadratiques 

Grande variance et 
Moins performantesPerformances 

similaires
Méthode 

de référence

Reference Method

Similar Performance

High variability 
Performance worse

Best Performance 
Quadratic in cost



HG2V:  Numerical experiments  — Visualisation (I)

PTC dataset



HG2V:  Numerical experiments  — Visualisation (II)

IMDB-b MNIST



HG2V:   Conclusion on this part

• Additional experiments & features 

✦ Ablative study -> Loukas’ pooling needed on large graphs ; GNN needed on 
continuous features 

✦ Experiments in inductive learning & transfer learning 

✦ End-to-End differentiability 

• To wrap-up 

✦ A good, state-of-the-art, representation method for attributed graphs 

✦ Linear in the number of input graphs -> scalable 

✦ Training is unsupervised and inductive 

✦ Can be incorporated in larger models to solve whatever task 

➡   HG2vec   =



A Simple Model to Learn Metrics 
Between Attributed Graphs

/5011/5011Modèles se basant sur des avancées en traitement du signal : Graph Convolutional Neural Networks 

Travaux de cette thèse 

Représentation de graphes hiérarchiques : Hierarchical Graph2Vec (HG2CV) 

Représentation de nœuds de multi-attribués : Multiview Graph Canonical Correlation Analysis (MVGCCA)

Apprentissage de métrique : Simple Graph Metric Learning (SGML)

Transport Optimal 

Variational auto-encoder

Mutual Information Maximization : negative sampling

distance 

From Yacouba  Kaloga’s thesis ; 12/2021 

Joint work with Amaury Habrard (LabHC; Saint-Etienne)



An even lower-level task: compute distances
• Why ?       At the input of many (many!) methods 

                “Real“ distances between graphs are often hard to compute (edit distance), 

                or can ignore some aspects  (e.g. spectral distances), 

                and usually forget about attributes 

• What for ?    Parametric distances allow for Metric Learning  

• cf. Tutorial on Metric Learning (A. Bellet), 2013 & https://arxiv.org/abs/1306.6709 
A Survey on Metric Learning for Feature Vectors and Structured Data

Metric Learning

Figure 1: Illustration of metric learning applied to a face recognition task. For simplicity,
images are represented as points in 2 dimensions. Pairwise constraints, shown
in the left pane, are composed of images representing the same person (must-
link, shown in green) or different persons (cannot-link, shown in red). We wish
to adapt the metric so that there are fewer constraint violations (right pane).
Images are taken from the Caltech Faces dataset.8

Underlying
distribution

Metric learning
algorithm

Metric-based
algorithm

Data
sample

Learned
metric

Learned
predictor

Prediction

Figure 2: The common process in metric learning. A metric is learned from training data
and plugged into an algorithm that outputs a predictor (e.g., a classifier, a regres-
sor, a recommender system...) which hopefully performs better than a predictor
induced by a standard (non-learned) metric.

λ ≥ 0 is the regularization parameter. As we will see in this survey, state-of-the-art metric
learning formulations essentially differ by their choice of metric, constraints, loss function
and regularizer.

After the metric learning phase, the resulting function is used to improve the perfor-
mance of a metric-based algorithm, which is most often k-Nearest Neighbors (k-NN), but
may also be a clustering algorithm such as K-Means, a ranking algorithm, etc. The common
process in metric learning is summarized in Figure 2.

1.2 Applications

Metric learning can potentially be beneficial whenever the notion of metric between in-
stances plays an important role. Recently, it has been applied to problems as diverse as
link prediction in networks (Shaw et al., 2011), state representation in reinforcement learn-
ing (Taylor et al., 2011), music recommendation (McFee et al., 2012), partitioning problems

8. http://www.vision.caltech.edu/html-files/archive.html

3

https://arxiv.org/abs/1306.6709


Metric Learning for Attributed Graphs = Leveraging the structure

• The main objective is to jointly code for topologies & attributes 

• Existing Solutions :  

❖ In ML:  low scalability when methods rely of GED (Graph Edit Distance) 

❖ In GSP: some works where topology G is set and distances between attributes on G 

[Graph Optimal Transport, Maretic et al. NeuRIPS 2019] 

❖ With kernels: usually nonparametric (exception multiple kernel learning) 

❖ Change the point-of-view: Optimal Transport between distributions

A Review of Existing Works



Chapter 1. Preliminaries

Figure 1.6: A toy optimal transport problem. On the left are blue heaps,
representing the source distribution. On the right are red holes, representing
the target distribution. Solving the corresponding optimal transport problem
consists in finding how to fill the holes with the heaps in a way that minimizes
the total transport cost.

Figure 1.7: Optimal transport map solving the OT problem of Figure 1.6. Low
matrix entries are lighter, and high matrix entries are darker.

the target (distribution). Knowing that the cost of moving some material from
a heap to a hole can be defined as the Euclidean distance Îxi ≠ yjÎ2 between
the two, an interesting question is to find the least costly way to do so. This
example uses heaps of material and holes; a more concrete example would be
moving products from factories to warehouses while minimizing fuel cost.

The solution of this discrete problem is called a transport map. It is a matrix
“

ú (œ R10◊10
+ here) where each entry “i,j indicates the quantity of material

transported from a heap to a hole. A visualisation of this matrix is given on
Figure 1.7. This matrix satisfies the following equation (with n = m = 10):

“
ú = argmin

“œRn◊m

“1n=a
“T 1m=b

Y
]

[

nÿ

i=1

mÿ

j=1
“i,j · Îxi ≠ yjÎ2

Z
^

\ . (1.10)

This equation states that the optimal transport map minimizes the total cost
of transport qn

i=1
qm

j=1 “i,j · Îxi ≠ yjÎ2, while conserving the masses (“1n = a

and “
T 1m = b).

In this example, some quantity of mass (either present [heaps] or required
[holes]) is present at various points on a 1D line. The OT framework abstracts
this, simply working with distributions in some probability measure space; the

14

Optimal Transport for Graphs or Attributed Graphs

• Optimal Transport: compute a distance between 2 distributions, while finding the 
optimal coupling (or transport plan) between these 2 

• cf. “Computational Optimal Transport“  (G. Peyré & M. Cuturi ), 2019   

https://arxiv.org/abs/1803.00567v4 

Problème de Monge : « Mémoire sur la théorie 
des déblais et des remblais », 1776
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Une solution :

Avec relaxation de 
Kantorovich

https://arxiv.org/abs/1803.00567v4


Optimal Transport for Graphs or Attributed Graphs

• Optimal Transport: Consider two finite sets  and  and two distributions 

on these  with  

• Given a cost function , one build the 2-Wasserstein distance  as: 

 

where  is  the set of joint distributions on   

whose  marginals are the distributions      and   

𝕏 = {xi}|𝕏|
i=1 ∈ ℝq×|𝕏| 𝕏′ 

μ = ∑
xi∈𝕏

aiδxi
   and   ν = ∑

x′ i∈𝕏′ 

biδx′ i
ai ≥ 0,bi ≥ 0and

n

∑
i=1

ai = 1,
n′ 

∑
i=1

bi = 1

c : ℝq × ℝq → ℝ+ 𝒲2

𝒲2(μ, ν) = inf
πi,j∈Πa,b

(
n,n′ 

∑
i,j=1

πi,jc(xi, x′ j)2)
1
2

Πa,b 𝕏 × 𝕏′ 

μ = ∑
x′ i∈𝕏′ 

π( ⋅ , x′ i) ν = ∑
xi∈𝕏

π(xi, ⋅ )



Optimal Transport for Graphs or Attributed Graphs

• For Graphs: one has to Associate a distribution to a graph  

- We already have seen one: the Weisfeiler-Lehman method 

- cf. Togninalli et al., “Wasserstein Weisfeiler-Lehman graph kernels“  NeurIPS 2019  

• A second solution: The Gromov Wasserstein distance  

- [Mémoli, Found. Comp. Math. 2011;  Peyré, Cuturi, Solomon, ICML 2016] 

- structures are compared through their pairwise distances 

- cf. also N. Courty, R. Flamary,      T. Vayer [PhD 2020] 

28 Chapter 2. Generality about optimal transport

Figure 2.8: The GW problem considers two probability measures µ œ P(X ), ‹ œ P(Y) over two spaces that do
not necessarily share a common metric. It is built upon the similarities cX , cY within each space and on a measure
of the distortion between each pair of points

--cX (x, x
Õ) ≠ cY(y, y

Õ)
--.

in depth in [Sturm 2012]. Another possibility is to consider triplets (X , cX , µ) where cX is a integrable
function, this notion refers to measure networks and was studied in [Chowdhury 2019a].

The GW objective is constructed so that if an optimal coupling fi maps x to y and xÕ to yÕ then the
couple (x, xÕ) should be “as similar” in X as (y, yÕ) in Y. When cX , cY are distances it implies that x, xÕ

are as close in X as y, yÕ in Y . In this work we consider a general setting where cX , cY are continuous and
X , Y are Polish spaces and we will detail the two previous settings.

As for the linear OT problem the equation (2.41) always admits a solution. To show that we define
L(x, xÕ, y, yÕ) =

--cX (x, xÕ) ≠ cY(y, yÕ)
--. If �(µ, ‹) is compact and the functionnal fi æ

´ ´
Ldfidfi is l.s.c.

for the weak-convergence, Weierstrass theorem (see Memo 2.2.1) proves that the infimum will be attained
at some optimal coupling. The first condition is a well-known result in OT theory provided that X , Y are
Polish spaces [Santambrogio 2015, Theorem 1.7]. For the lower semi-continuity w.r.t. the weak-convergence
we can show that it su�ces that L be itself l.s.c. using the following lemma:

Lemma 2.2.1. Let � be a Polish space. If f : � ◊ � æ R+ fi {+Œ} is lower semi-continuous, then the
functional J : P(�) æ R fi {+Œ} with J(µ) =

´ ´
f(w, wÕ)dµ(w)dµ(wÕ) is l.s.c. for the weak convergence

of measures.

Proof. Since f is l.s.c. and bounded from below by 0 we can consider (fk)k a sequence of continuous and
bounded functions converging increasingly to f (see e.g [Santambrogio 2015]). By the monotone convergence
theorem Jk(µ) æ J(µ) def= supk Jk(µ) = supk

´ ´
fkdµdµ. Moreover every Jk is continuous for the weak

convergence. Using theorem 2.8 [Billingsley 1999] on the Polish space � ◊ � we know that if µn converges
weakly to µ then the product measure µn ¢ µn converges weakly to µ ¢ µ. In this way limnæŒ Jk(µn) =
Jk(µ) since fk are continuous and bounded. In particular every Jk is l.s.c. We can conclude that J is
l.s.c. as the supremum of l.s.c. functionals on the metric space of (P(�), ”) (see e.g. [Santambrogio 2015]).
Here we equipped P(�) with a metric ” as e.g. ”(µ, ‹) =

q
Œ

k=1 2≠k|
´

� fkdµ ≠
´

� fkd‹| (see remark 5.11
in [Ambrosio 2005]).

Memo 2.2.1 (Weierstrass theorem). The Weierstrass theorem states that if f : X æ R fi +Œ is
l.s.c. and X is compact then there exists xú = infxœX f(x) (see box 1.1 in [Santambrogio 2015]).



Optimal Transport for Graphs or Attributed Graphs

• One can combine Attributes and Gromov characterisation of graphs  

- “Fused Gromov-Wasserstein distance“ [Vayer et al., ICML 2019] 

• Shameful advertisement: see The Diffusion Wasserstein distance, [Barbe et al. 2020-201]

Optimal Transport for structured data  
with application on graphs

Titouan Vayer 
Joint work with Laetitia Chapel, Remi Flamary, Romain Tavenard and Nicolas Courty

A novel distance between labeled graphs  
based on optimal transport 



Optimal Transport for Attributed Graphs, with Metric Learning

• The idea is to parametrize (graphs+attributes) through a GCN  

- Then compute distance between them by optimal transport 

• Trainable parameters: the parameters of the GCN 

- Use an understandable GCN with few parameters (hence: not a deep one); Simple GCN 

- [Wu et al. “Simplifying graph convolutional networks“. PLMR 2019]



Optimal Transport for Attributed Graphs, with Metric Learning 
and Reduced Computational Load

• For Optimal Transport: Use the Sliced methods  
- [N. Bonneel et al., “Sliced and Radon Wasserstein barycenters of measures“,  JMIV 2015] 

• To Extract Features for Attributed Graphs: Simple GCN [2019] 
- Amounts to Graph Filtering (Feature Propagation) then standard Non-Linear Activation fct

74 Chapter 4. The Gromov-Wasserstein problem in Euclidean spaces
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Figure 4.1: Example in dimension p = 2 and q = 3 (left) that are projected on the line (right). The solution for
this projection is the anti-diagonal coupling.

We propose to minimize SGW� with respect to � in the Stiefel manifold Vp(Rq) [Absil 2009] which
is defined as Vp(Rq) = {� œ Rq◊p|�T � = Ip}. It can be seen as finding an optimal projector of the
measure µ [Paty 2019,Deshpande 2019]. This formulation comes at the cost of an additional optimization
step but allows recovering one key property of GW. When p = q this encompasses for e.g. all rotations of
the space, making RISGW invariant by rotation.

Interestingly enough, SGW holds various properties of the GW distance as summarized in the following
theorem:

Theorem 4.1.3 (Properties of SGW ).

• For all �, SGW� and RISGW are translation invariant. RISGW is also rotational invari-
ant when p = q, more precisely if Q œ O(p) is an orthogonal matrix, RISGW (Q#µ, ‹) =
RISGW (µ, ‹) (same for any QÕ œ O(q) applied on ‹).

• SGW and RISGW are pseudo-distances on P(Rp), i.e. they are symmetric, satisfy the triangle
inequality and SGW (µ, µ) = RISGW (µ, µ) = 0 .

• Let µ, ‹ œ P(Rp) ◊ P(Rp) be probability distribution with compact supports. If SGW (µ, ‹) = 0
then µ and ‹ are isomorphic for the distance induced by the ¸1 norm on Rp, i.e. d(x, xÕ) =
qp

i=1 |xi ≠ xÕ

i| for (x, xÕ) œ Rp ◊ Rp. In particular this implies:

SGW (µ, ‹) = 0 =∆ GW2(d, d, µ, ‹) = 0 (4.7)

(with a slight abuse of notation we identify the matrix Q by its linear application). A proof of this
theorem can be found in Section 6.2.4. This theorem states that if SGW vanishes then measures must be
isomorphic, as it is the case for GW . It states also that RISGW holds most of the properties of GW in
term of invariants.

Remark 4.1.1. The � map can also be used in the context of the Sliced Wasserstein distance so as to
define SW�(µ, ‹), RISW (µ, ‹) for µ, ‹ œ P(Rp) ◊ P(Rq) with p ”= q. Please note that from a purely
computational point of view, complexities of these discrepancies are the same as SGW and RISGW

when µ and ‹ are discrete measures with the same number of atoms n = m, and uniform weights. Also,
unlike SGW and RISGW , these discrepancies are not translation invariant. This approach was studied
in [Lai 2014] for the case p = q in the context of point cloud registration. More details are given in Section
6.2.5.

Figure: T. Vayer

Initial attributes  ; Modified Adjacency matrix ; New Features  as X ∈ ℝn×q Ã = A + In Y

Y = ReLU( Ã rXΘ)



• Objective function ? 

- Go back to slide on Bellet et al. 

- Here: a variant of NCA 

- Nearest Class Cloud Metric Learning 

- Designed to boost 1-NN classif.

Metric Learning for Attributed Graphs, with Optimal Transport 
and Reduced Computational LoadLoss function

Attributed graph label

Probability for the graphs G to have label e

Maximize the probability for each graph to have is own label



• Graph Datsets 

• Task of Supervised Classification 

- k-Nearest Neighbors classifier  

- SVM with induced kernel

Metric Learning for Attributed Graphs,  
Numerical Experiments

Datasets BZR COX2 ENZYMES MUTAG NCI1 PTC-MR

#Graphs 405 467 600 188 4110 344
#Nodes 35.75 41.22 32.63 17.93 29.97 14.29

Node attributes cont. cont. lab. deg. lab. lab.
q 3 3 18 4 38 18

Table 2: Graph datasets used in our experiments. #Graphs: num-
ber of graphs. #Nodes: average number of nodes. cont.: continuous.
lab.: labels. deg.: degree.

compare the method to several (pseudo-)metric and distances
from literature such as NetLSD [Tsitsulin et al., 2018], WWL
[Togninalli et al., 2019], and FGW [Vayer et al., 2019].
k-Nearest Neighbors. Datasets are split in a training (90%)
and test set (10%). For each of them we train RPW2 follow-
ing Algorithm 1 on the training set with only one hyperpa-
rameter to adjust: the depth of SGCN taken as r = {1, 2, 3, 4}
for all datasets, except for MUTAG for which we go up
to 7. The training is done for each parameter r during 10
epochs. A 5-fold cross validation of the number of neigh-
bors k = {1, 2, 3, 5, 7} to be considered is performed on the
training set using the considered distance. Then for the best
k
⇤, we keep the associated validation accuracy, and we finally

train a k-NN on the whole training set and evaluate its accu-
racy on test set. This experiment is averaged on 10 runs. The
final test accuracy retained is the one associated to the largest
validation accuracy. In this procedure, labels of test sets were
never seen during neither training nor validation. The results
are given in the first lines of Table 1.

The learning metric framework combined with k-NN al-
lows us to obtain high performance in classification tasks, in
particular for graph datasets with continuous attributes. For
discrete attributes, SGML has performance slightly below the
state-of-the-art, yet outperforms the existing distances classi-
cally combined with a k-NN. The experiments show that our
graph metric learning distance framework is efficient.
Note 1 : This procedure is very similar to the one used by

WWL, except that the parameter k is replaced by the corre-

sponding parameters of their kernel (see next section).

Note 2 : The learning rate 0.999 10�2
was to heavy for

ENZYMES, so we used 0.999 10�3
for this dataset. Accord-

ingly we set the number of epochs to 20. However we let

the possibility to early stop at 10 epochs, meaning that the

epochs E become an hyperparameters E = {10, 20}.

SVM. To compare to graph kernel methods, the experiment
described in the previous section is reproduced using a SVM
for classification. The kernel KRPW2 = exp(��d

RPW2
⇥⇤ )

is built from the constructed distance. In this experiment,
kernel hyperparameter � and SVM hyperparameter C are
tuned similarly as the parameter k above. The set of possible
� (resp. C) values are 6 (resp. 12) regularly spaced values
between 10�4 and 101 (resp. 10�4 and 105 including 1). The
results are provided in Table 1 (bottom part).

In this part of the table, one can see that the distance
learned with our model performs as well as other OT dis-
tances when used as a kernel, on the majority of the datasets.
We are still below on some datasets (notably NCI1 and TC-
MR) but recall that our method is specifically designed for the
k-nearest neighbors method and that its computational com-

Dataset WWL SGML - SW2 SGML - NCA
Method Acc. � Acc. � Acc. �

BZR 78.05 - 7.56 82.93 - 2.68 83.41 - 2.2
COX2 78.72 - 1.07 78.30 - 1.49 77.66 - 2.13

MUTAG 73.68 - 16.32 86.84 - 3.16 87.37 - 2.63
NCI1 80.29 + 5.45 69.03 - 3.09 69.66 - 2.46

PTC-MR 65.71 + 6.85 60.86 + 2.0 53.43 - 5.43
ENZYMES 48.33 - 0.67 44.33 - 4.67 55.33 + 6.33

Table 3: Results of experiments on the different datasets without
some of the proposed contributions. Acc. is the accuracy. � is
the difference in accuracy between the model of the column and the
proposed one SGML whose results are on Table. 1. Red negative
(resp. Green positive) number means that our model perform better
(resp. worse).

plexity is much lower than many of the best methods on these
datasets (notably WWL and FGW).

5.3 Ablative study

We perform experiments to justify the design choice of our
model. Specifically we show that these choices effectively
help to improve k-NN performance by reproducing the exper-
iments above (with k-NN) on different versions of the method
without some (or all) of our propositions.
Raw model. Without any of our novel propositions, the
method would be equivalent to WWL, which corresponds to
use the Wasserstein distance between distributions of Eq. (7),
where Y is generated with GIN [Xu et al., 2019], a non train-
able GCN. This specific case corresponds to the first column
denoted WWL of Table 3. We see that even if there are
datasets where there is a loss of performance, others benefit
from the learned metrics. This is in particular true for datasets
with continuous attributes.
SGML with SW2. This second ablative study is in the sec-
ond column, denoted SGML-SW2, of Table 3, and is related
to replacing RPW2 by SW2. The result clearly validates our
choice to use RPW2 instead of SW2. Our model is the best
one almost every datasets.
SGML with NCA. For this final experiment we replaced
the loss NCCML by the NCA loss. The result is in the third
column, SGML - NCA of Table 3. It appears that NCCML
outperforms NCA in our specific metric learning framework.

Globally, the ablative study is in favor of the choices pro-
posed for SGML. Note that the driving idea of choosing sim-
ple and scalable methods over more complex ones, leads to
competitive performance while allowing scalability.

6 Conclusion

In this article we proposed a metric learning method for
graphs, specifically to increase the performance of k-NN. We
have shown experimentally that it can indeed achieve perfor-
mance similar or even superior to the state of the art. How-
ever, a theoretical work on the properties of RPW2 will be
useful to allow us to better understand when it does not per-
form well. For even more efficiency, further work may be
done to adapt loss functions according to the nature of the
dataset treated, but also to extend the model to learn metric
for different tasks such as graph clustering.

Dataset Continuous attributes Discrete attributes

Method BZR COX2 MUTAG NCI1 PTC-MR ENZYMES

SGML - RPW2 (ML-kNN) 85.61± 2.98 79.79± 2.18 90.00± 7.60 72.12± 1.65 58.86± 5.88 49.00± 8.17
Net-LSD-heat (1-NN) 7 7 84.90 65.89 55.30 31.99

FGSD (1-NN) 7 7 86.47 75.77 60.28 41.58
NetSimile (1-NN) 7 7 84.09 66.56 61.26 33.23

SGML - RPW2 (ML-OT-SVM) 84.39± 3.81 78.51± 0.01 88.95± 7.61 74.84± 1.81 58.29± 6.29 54.00± 7.07
WWL (OT-SVM) 84.42± 2.03 78.29± 0.47 87.27± 1.50 85.75± 0.25 66.31± 1.21 59.13± 0.80
FSW (OT-SVM) 85.12± 4.15 77.23± 4.86 83.26± 10.30 72.82± 1.46 55.71± 6.74 7

FSW-WL [p = 4] (OT-SVM) 7 7 88.42± 5.67 86.42± 1.63 65.31± 7.90 7
HGK-SP (SVM) 76.42± 0.72 72.57± 1.18 7 7 7 7
WL-OA (SVM) - - 87.15± 1.82 86.08± 0.27 60.58± 1.35 58.97± 0.82

PSCN [K = 10] (GCN) 80.00± 4.47 71.70± 3.57 83.47± 10.26 70.65± 2.58 58.34± 7.71 7

Table 1: Results of the main experiments on the different datasets. The accuracy results of our main experiments are reported. The first
block correspond to method where the classification is performed with a k-NN. In the second block, the classification is done with an SVM
or a GCN. The accuracy are in bold green when they are the best of its block.

close to the barycenter of his class. NCMML is built to max-
imize nearest mean classifier. Because our goal is to boost k-
NN performance, NCMML is not well suited for our model.
We will show on the experiments that, in this specific context,
NCCML exhibits better performance than NCA.

Algorithm 1 SGML: High-level algorithm with RPW2

Ensure: Build a distance d
RPW2
⇥ .

Require: A dataset of attributed graphs G and their labeling
function E .
for each epoch e 2 {1, . . . , E} do

Build a partition: [kBk = G with Bk \Bk0 = ;.
for each batch Bk do

for each graph pair (G,G0) 2 Bk ⇥Bk do

Compute distance d
RPW2
⇥ (G,G0) (Eq. (5))

Compute �FBk
⇥ (Eq. (11)) and apply an iteration of

Adam descent algorithm.
return all pairwise distance d

RPW2
⇥⇤ in G.

4.4 Complexity and optimization

Optimization. In terms of optimization, we can differenti-
ate directly with respect to one dimensional distribution pa-
rameters of Wasserstein distance, thus we can also differen-
tiate through approximation of SW2 (Eq. (4)) and RPW2

(Eq. (5)). Self-differentiation techniques can be used on these
expressions (see [Peyré and Cuturi, 2019]). We implemented
our algorithm in tensorflow7. The minimization of the loss
is performed by batch and stochastic gradient descent (in par-
ticular with the optimizer Adam [Kingma and Ba, 2015]). The
learning rate is set to 0.999 ⇤ 10�2 in all our experiments.
Time complexity. The computation of the RPW2 distance
is theoretically in O(pqn log n); yet, by reorganizing the op-
erations carried out, one can vectorize a part of the computa-
tion and save a significant time on GPU during the training.
The implementation we have made has therefore a worst case
complexity O(pqnn0) in theory, but is experimentally more
efficient. Taking into account this aspect, and that the tempo-
ral complexity of the model is dominated by the computation

7The implementation can be found on ....

of distances, by noting E the number of epochs, B the size
of the batch and ñ the number of average nodes of a graph,
the total complexity for RPW2 (resp. SW2) is given respec-
tively by O(|G|EB

2
pqñ

2) (resp. O(|G|EB
2
Mñ

2)).
Spatial Complexity. For the GPU implementation, the
memory cost is dominated by a matrix containing all the
transport costs between the features of all the graphs of the
batch, which corresponds for RPW2 (resp. SW2) respec-
tively to a size complexity of O(pB2

n
2
b) (resp. O(MB

2
n
2
b)),

where nb is the size of the largest graph of the current B
batch. In all our experiments we set B = 8, M = 50 (is
a common value used in SW2 literature) and p = min(5, q).
Running time. As an example, for B = 8, E = 10, r = 4,
p = min(5, q), the training on the MUTAG dataset (q = 4,
188 graphs) takes 5 seconds and the computation of all possi-
ble distance pairs also takes8 about 5 seconds. On the largest
dataset consdered: NCI109 (q = 38, 4127 graphs), the train-
ing time is approximately 5 minutes while the computation of
all possible distance pairs takes about 50 minutes (including
the time of applying the GCN). In comparison, for W2 dis-
tance in WWL (including the time to generate features) com-
putingg all distance takes approximately ⇠1.5 s on MUTAG
and 20 minutes on NCI1. Hence the proposed RPW2 scales
better (x6 against x8) than W2, while the current implemen-
tation of W2 is faster thanks to the optimized implementation
in POT [Flamary et al., 2021]. An improved implementation
of RPW2 will be done to fully exploit its theoretical com-
plexity.

5 Experiments

5.1 Datasets

For the experiments, we use a large panel of datasets from
the literature [Kersting et al., 2016]9. The datasets are sum-
marized in Table 2.

5.2 Supervised classification

We evaluate the method in two ways: by using k-NN directly
on the computed distances, and by using a SVM with a cus-
tom kernel built from the model proposed. We eventually

8Cumpotations done on ryzen3800 - GTX 3080 (10 Go) - 62 Go.
9http://graphkernels.cs.tu-dortmund.de
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• A conclusion: it works as initially wished; time complexity in .O( |𝔾 |EB2pqñ2)



Now is the time to conclude
• Two examples of models for Representation Learning of (Attributed) Graphs 

• Non-Linear methods easily obtained thanks to GNN / GCN 

• Saturation of many ML (GNN) methods on graphs (dataset, performance,…) 

• => Favor the simpler methods, with a specific objectives and reduced costs 

• A way forward: Introduce some explainability in these graph-based methods 

• Last (still shameful) Advertisement: we hire a post-doc
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Première approche :

Analyse du nombre de locations de Vélo’v
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Supplements



More (visual) details on GCN vs. Simple GCN

[Wu et al. “Simplifying graph convolutional networks“. PLMR 2019]

[Kipf & Welling “Semi-supervised classification with graph convolutional networks“. 
ICLR 2017]


