Representation Learning for Attributed Graphs

GDR ISIS 08/03/2022 perso.ens-lyon.fr/pierre.borgnat Work supported by: CNRS, ENSL, ANR, IDEXLyon, CHIST-Era project

Pierre Borgnat Equipe Sisyphe, Laboratoire de Physique, CNRS, ENS de Lyon work: Yacouba Kaloga (LP ENSL) and A. Habrard (Lab. Hubert Curien, Saint-Etienne

Graphs: useful stru

CoRR. abs/1609.08965. 2016

- Chemistry
- Physics

Source: Yunsheng Bai, Hao Ding, Yang Qiao, Agustin Marinovic, Ken Gu, Ting Chen, Yizhou Sun, and Wei Wang. **Unsupervised inductive whole-graph embedding by preserving graph proximity.** arXiv preprint arXiv:1904.01098, 2019.

for data processing

and/or irregular shapes

$$setting: Attributes, or Features 0/3 Signals$$

$$\mathcal{G} = (V, E, X) = (A, X)$$

$$x(u_1) = \begin{pmatrix} 0.1 \\ 1 \\ -0.4 \end{pmatrix}$$

$$x(u_1) = \begin{pmatrix} 0.1 \\ 1 \\ -0.4 \end{pmatrix}$$

$$u_1$$

$$u_1$$

$$x(u_2) = \begin{pmatrix} 0.1 \\ 1 \\ -0.4 \end{pmatrix}$$

$$u_1$$

$$u_1$$

$$u_1$$

$$u_2$$

$$u_2$$

$$u_4$$

$$u_2$$

$$u_4$$

 $\mathcal{G} = (V, E, X)$

an carry information:

Many Machine Learning tasks for Data on Graphs **Supervised Tasks**

• Learn to classify Nodes

• Learn to classify Graphs

Many Machine Learning tasks for Data on Graphs **Unsupervised Tasks**

• Learn to find clusters (or modules, communities,...)

• Note: more general features -> small-world, scale-free,...

• Learn to cluster collection of graphs

[see Complex Networks]

Many Machine Learning tasks for Data on Graphs **Representation of graphs : Embeddings**

• For Visualisations or low-dim embeddings (Laplacian Maps, LLE, ForceAtlas, t-SNE, UMAP,...)

From [Tremblay & Borgnat, 2015]

• For high-dimensional embeddings

From [Hamilton., "Graph Representation Learning", 2020]

Low Level task: (Graphs) Representation Learning

- Representation Learning = discover, or learn, adequate representations for studied data so as to extract information
- Machine Learning in one sentence: build a map from data x to decision y

$$y = \mathscr{F}(x)$$

• Machine Learning in the good all times

$$\mathcal{F} = \mathcal{F}(x)_{\text{decision}} \circ \mathcal{F}(x)_{\text{fe}}$$

learnt from data

• Machine Learning with Representation Learning / Deep Learning

$$\mathcal{F} = \mathcal{F}_{decision} \circ \mathcal{F}_{features}$$

All learnt from data

[From Pierre Vandergheynst' talk]

From [Goodfellow et al., "Deep Learning", 2016]

Low Level task: Graphs Representation Learning

• For Graphs, Representation learning can be summarised as:

For Collection of Graphs

Often for graphs: agglomerate Nodes representations

For Nodes in a Graph

Low Level task: Graphs Representation Learning

- Direct comparisons of Graphs is hard / computationally challenging (e.g.; GED)
- Node-level: local inhomogeneities in structure => hard to compare two nodes

• Graph-level: possible isomorphism => hard to compare (even to find equality) two graphs

Some Associated Difficulties

• From ~2015 on: an ever growing interest to Deep models for Graph Structures

 $\mathcal{F}(x)$

then Stack them =

• For Graphs: One n

Graphe à l'étape (l)

Graphe à l'étape (l+1)

- (the same weights a
- For Graphs ? Use t

 $W = U D_{\Theta} U^T$

- [See Shuman et al., SP Mag 2013]
- - $W = P_{\Theta}(L)$

$$\mathcal{F}_{i^{\text{th}} \text{ node}}(x) = \sigma(w_i^T x + b_i) \quad w_i = [P_{\Theta}]$$

same parameters for all nodes

• Convolutions are defined in the Speetral domain (L = Laplacian)

Special form, polynomial of shift operator

 $(L)]_i$

[From Pierre Vandergheynst' talk]

[Defferrard et al., 2015]

• Why care ? Gives a trend to powerful methods

Citations of The Graph Neural Network Model [Scarselli et al., 2009]]

• Strong applications :

- Drug Discovery ChemProp [Cell 2020];
- repurposing]
- What we will not do: propose a new GNN architecture

Citations of GCN [Kipf & Welling, 2017]

·Alphafold2 and Transformers use graphs • Drug repurposing [see S. Chepuri, 2020: Dr-COVID: graph neural networks for SARS-CoV-2 drug

• OpenCatalyst: discover new molecules that are catalysts for Chemistry (e.g., for fuel conversion)

- What we will not do: propose a new GNN architecture
- (too) Many exist and there are limits associated to GNNs / GCNs, and already studied • S. Luan et al., "Break the ceiling: Stronger multi-scale deep graph convolutional
 - networks." NeurIPS 2019
 - K. Xu et al. "How powerful are Graph Neural Networks », ICLR 2019
 - A. Loukas et al. "What graph neural networks cannot learn: deepth vs. width" ICLR 2020
 - Z. We et al. "A comprehensive survey on graph neural networks." IEEE Trans. NNL 2020

and still counting...

Nicolas Keriven @n_keriven · Dec 2, 2020

I feel like the GNN literature is at this stage where there are *thousands upon thousands* of papers for only a small handful of fundamentally different ideas with 15 different names for each

• What we will do: think of GNNs/GCNs as element to model a Graph Representation

Some Recent examples from our works

 Is it possible to embed attributed graphs with an inductive & trainable representation ?

[L.. Béthune, Y. Kaloga et al, Algorithms 2020/08]

The Many Sides of Graph Representation Learning

How to learn distances between Attributed Graphs? [Y. Kaloga, A. Habrard, P. Borgnat, 2022]

• Is it possible to align an attributed graph to another ? e.g., so as to classify the 2nd from known classes of the 1st

[A. Barbe et al, ECML 2020/09] Joint work with M. Sebban, R. Gribonval, P. Gonçalves

The Many Sides of Graph Representation Learning

Some Recent examples from our works

• Is it possible to embed attributed graphs with an inductive & trainable representation ?

[A. Barbe et al, ECML 2020/09] Joint work with M. Sebban, R. Gribonval, P. Gonçalves

Multiscale Representation of Graphs: the Hierarchical Graph2Vec Algorithm

Article

Hierarchical and Unsupervised Graph Representation Learning with Loukas's Coarsening

Louis Béthune ^{1,*,†}, Yacouba Kaloga ^{1,†}, Pierre Borgnat ¹, Aurélien Garivier ² and Amaury Habrard³

- ENS de Lyon, UCB Lyon 1, CNRS, Laboratoire de Physique, UMR 5672, 69342 Lyon, France; yacouba.kaloga@ens-lyon.fr (Y.K.); pierre.borgnat@ens-lyon.fr (P.B.)
- ENS de Lyon, UCB Lyon 1, CNRS, UMPA UMR 5669 and LIP UMR 5668, 69342 Lyon, France; 2 aurelien.garivier@ens-lyon.fr
- Laboratoire Hubert Curien, UJM-Saint-Etienne, UMR 5516, 42100 Saint-Étienne, France; 3 amaury.habrard@univ-st-etienne.fr
- Correspondence: louis.bethune@ens-lyon.fr
- These authors contributed equally to this work.

Received: 6 July 2020; Accepted: 17 August 2020; Published: 21 August 2020

Multiscale Representation of Graphs: the Hierarchical Graph2Vec Algorithm

• Several Methods for 1 graph: Node Embeddings; Node2Vec; GraphWave,...

• Several Methods for a collection of graphs: Concatenation of Node Embeddings; **Graph2Vec**; DeepWalk; Kernels; Infograph (2020) (close to HG2V)

The Main Objectives ; Why another method ?

Multiscale Representation of Graphs: the Hierarchical Graph2Vec Algorithm

The Main Objectives ; Why another method ?

The properties of a graph may depend on several of its scales The representation function must take into account these different scales

Graphs close structurally and/or in terms of attributes should have close representation The representation function must be "continuous" in structure and attributes

Labels are expensive to acquire The representation function should operate even without a label: unsupervised learning

More and more data and more and more energy-intensive training procedures *It must be possible to analyse a large number of graphs The representation function must be able to represent graphs never seen before: inductivity

able In addition: able to specifically focus on certain aspects for the representation The function must be end-to-end differentiable

HG2V: a Classical General Framework

• From Attributed Networks to Euclidean Vectors

• Obtained Representations can be used for learning

HG2V: State of the art (partial view)

• In Machine Learning / Computer Science

- ✦ Heuristic methods measuring similarities between graphs
- ✦ Indirect representations through scalar products / kernel trick
- ✦ Quadratic Methods for kernels

• Approaches in Deep Learning

- ✦ Neural networks for encode graph features
- ✦ Auto-Encoders
- ✦ Negative sampling

Obtained Representations can be used for learning For HG2vec = we require the properties of previous slide

• Insights from Graph Signal Processing

✦ Interplay between Structure (graph) & Attributes (signals / features)

✦ Multiscale view is required

Method	Continuous Attributes	Complexity (Training)	Complexity (Inference)	End-to-End Differentiable	Superv
Kernel methods, e.g., WL-OA [27], WWL [4]	\checkmark	$\mathcal{O}(N^2)^*$	$\mathcal{O}(N)^{*}$	X	X
Graph2Vec [2]	×	$\mathcal{O}(N)$	×	×	×
GIN [32], DiffPool [17], MinCutPool [18]	✓	$\mathcal{O}(N)$	$\mathcal{O}(1)$	\checkmark	1
HG2V (Section 4), Infograph [13]	✓	$\mathcal{O}(N)$	$\mathcal{O}(1)$	\checkmark	×

Characterize a Graph from its Nodes

• The Weisfeiler-Lehman Test – Characterize a Graph by its Sub-Trees

- Does not work for continuous attributes -> Use Graph Neural Networks
- Does not consider Global Structures

Characterize a Graph from its Nodes

• From Weisfeiler-Lehman to GNN (here Conv. one)

- Can use continuous attributes (or discrete ones)
- Continuous with respect to topology of the graph (not explained here)
- Discriminative power can be as good as WL (see GIN in "How Powerful are Graph Neural Networks ?" ICLR 2019)
- GNN can be aptly stacked if one chooses a correct one (e.g., GCN of [Kipf&Welling, ICLR 2017] ; Truncated Krylov [Luan et al. NeurIPS 2019]

Characterize a Graph from its Nodes: the issue of Pooling and of the Global View

- Problem with GNN: impossible to characterise several global properties, cf. A. Loukas et al. "What graph neural networks cannot learn: deepth vs. width" ICLR 2020
- Proposed architecture: use a Pooling method between GCN layers -> Hierarchical method

- Allows to change the scale from one level to another
- Pooling can have various definition Key point = how to cope with irregularities • [Loukas, 2019] Spectral pooling that keeps the structure, thanks to Laplacian Spectal
- properties of the associated pooling

Characterize a Graph from its Nodes: the issue of Pooling

• [Loukas, 2019] Spectral pooling that keeps the structure, thanks to Laplacian Spectal properties of the associated pooling

• Each step preserves the global (low-pass) structures of the graph

HG2V: Overview of the proposed method

HG2V: More details of the attributes of Nodes and Neighbourhoods

• Each node has a representation per scale, that will be used in the global representation

 $x^{(l)}(u_2)$ • Each neighbourhood is also represented (here: neighbourhoods of level 1)

$$x^{(0)}(u_{i}) = M_{\theta}(x(u_{i}))$$

$$x^{(l)}(u_{i}) \mathcal{F}_{\theta}^{(l)}(\mathcal{H}_{\theta}(x(u_{i}))) (u_{i}) \{x^{(l-1)}(v) | v \in \mathcal{V}_{p}(u)\})$$

$$\mathcal{R}^{(l)}(\mathcal{G}(u_{i})) (\mathcal{H}_{\theta}(u_{i})) (u_{i}) ($$

HG2V: More details about the Learning procedure = Negative sampling

e..g. Hjelm et al. "Learning deep representations by mutual information estimation and maximization. ICLR 2010

from independent prob.), we ensure that nodes and neighbors minimize the cross-entropy

• Sketch one level of the hierarchy: sampling positive examples and negative examples (sampled

HG2V: More details about the Learning procedure = Negative sampling

e..g. Hjelm et al. "Learning deep representations by mutual information estimation and maximization. ICLR 2019

• Mutual Information to be minimised

$$\mathcal{L}^{(l)} = \mathbb{E}_{(x_{v}^{(l)}(u), x^{l+1}(w)) \sim P(\mathbb{X}_{v}^{(l)}, \mathbb{X}^{(l+1)})} \log \tau(x_{v}^{(l)}(u) \cdot x^{l+1}(w)) \\ + \mathbb{E}_{(x_{v}^{(l)}(u), x^{(l+1)}(w)) \sim P(\mathbb{X}_{v}^{(l)}) \otimes P(\mathbb{X}^{(l+1)})} \log \tau(-x_{v}^{(l)}(u) \cdot x^{(l+1)}(w)) \\ \mathcal{L}^{(l)} = \mathbb{E}_{(x_{v}^{(l)}(u), x^{l+1}(w)) \sim P(\mathbb{X}_{v}^{(l)}, \mathbb{X}^{(l+1)})} \log \tau(x_{v}^{(l)}(u) \cdot x^{l+1}(w)) \\ \mathcal{L}^{(l)} \stackrel{\pm}{=} \mathbb{E}_{x_{x_{v}}^{(l)}(u), x^{(l+1)}(w)) \simeq P(\mathbb{X}_{v}^{(l)}) \otimes P(\mathbb{X}^{(l+1)})} \log \tau(x_{v}^{(l)}(u) \cdot x^{l+1}(w)) \\ \mathcal{L}^{(l)} \stackrel{\pm}{=} \mathbb{E}_{x_{x_{v}}^{(l)}(u), x^{(l+1)}(w)) \simeq P(\mathbb{X}_{v}^{(l)}) \otimes P(\mathbb{X}^{(l+1)})} \log \tau(x_{v}^{(l)}(u) \cdot x^{(l+1)}(w)) \\ \mathcal{L}^{(l)} \stackrel{\pm}{=} \mathbb{E}_{(x_{v}^{(l)}(u), x^{(l+1)}(w)) \simeq P(\mathbb{X}_{v}^{(l)}) \otimes P(\mathbb{X}^{(l+1)})} \log \tau(-x_{v}^{(l)}(u) \cdot x^{(l+1)}(w))} \\ \mathcal{L}^{(l)} \stackrel{\pm}{=} \mathbb{E}_{(x_{v}^{(l)}(u), x^{(l+1)}(w)) \simeq P(\mathbb{X}_{v}^{(l)}) \otimes P(\mathbb{X}^{(l+1)})} \log \tau(-x_{v}^{(l)}(u) \cdot x^{(l+1)}(w))} \\ \mathcal{L}^{(l)} \stackrel{\pm}{=} \mathbb{E}_{(x_{v}^{(l)}(u), x^{(l+1)}(w)) \simeq P(\mathbb{X}_{v}^{(l)}) \otimes P(\mathbb{X}^{(l+1)})} \log \tau(-x_{v}^{(l)}(u) \cdot x^{(l+1)}(w))} \\ \mathcal{L}^{(l)} \stackrel{\pm}{=} \mathbb{E}_{(x_{v}^{(l)}(u), x^{(l+1)}(w)) \simeq P(\mathbb{X}_{v}^{(l)}) \otimes P(\mathbb{X}^{(l+1)})} \log \tau(-x_{v}^{(l)}(u) \cdot x^{(l+1)}(w))} \\ \mathcal{L}^{(l)} \stackrel{\pm}{=} \mathbb{E}_{(x_{v}^{(l)}(u), x^{(l+1)}(w)) \simeq P(\mathbb{X}_{v}^{(l)}) \otimes P(\mathbb{X}^{(l+1)})} \log \tau(-x_{v}^{(l)}(u) \cdot x^{(l+1)}(w))} \\ \mathcal{L}^{(l)} \stackrel{\pm}{=} \mathbb{E}_{(x_{v}^{(l)}(u), x^{(l+1)}(w)) \simeq P(\mathbb{X}_{v}^{(l)}) \otimes P(\mathbb{X}^{(l+1)})} \log \tau(-x_{v}^{(l)}(u) \cdot x^{(l+1)}(w))} \\ \mathcal{L}^{(l)} \stackrel{\pm}{=} \mathbb{E}_{(x_{v}^{(l)}(u), x^{(l+1)}(w)) \simeq P(\mathbb{X}_{v}^{(l)}) \otimes P(\mathbb{X}^{(l+1)})} \log \tau(-x_{v}^{(l)}(u) \cdot x^{(l+1)}(w))} \\ \mathcal{L}^{(l)} \stackrel{\pm}{=} \mathbb{E}_{(x_{v}^{(l)}(u), x^{(l+1)}(w)) \simeq P(\mathbb{X}_{v}^{(l)}) \otimes P(\mathbb{X}^{(l+1)})} \log \tau(-x_{v}^{(l)}(u) \cdot x^{(l+1)}(w))}$$

$$\mathcal{L}^{(l)} = \mathbb{E}_{(x_{v}^{(l)}(u), x^{l+1}(w)) \sim P(\mathbb{X}_{v}^{(l)}, \mathbb{X}^{(l+1)})} \log \tau(x_{v}^{(l)}(u) \cdot x^{l+1}(w)) \\ + \mathbb{E}_{(x_{v}^{(l)}(u), x^{(l+1)}(w)) \sim P(\mathbb{X}_{v}^{(l)}) \otimes P(\mathbb{X}^{(l+1)})} \log \tau(-x_{v}^{(l)}(u) \cdot x^{(l+1)}(w)) \\ \mathcal{L}^{(l)} = \mathbb{E}_{(x_{v}^{(l)}(u), x^{l+1}(w)) \sim P(\mathbb{X}_{v}^{(l)}, \mathbb{X}^{(l+1)})} \log \tau(x_{v}^{(l)}(u) \cdot x^{l+1}(w)) \\ \mathcal{L}^{(l)} \stackrel{\pm}{=} \mathbb{E}_{x_{x_{v}}^{(l)}(u), x^{l+1}(w)) \sim P(\mathbb{X}_{v}^{(l)}, \mathbb{X}^{(l+1)})} \log \tau(x_{v}^{(l)}(u) \cdot x^{l+1}(w)) \\ \mathcal{L}^{(l)} \stackrel{\pm}{=} \mathbb{E}_{x_{x_{v}}^{(l)}(u), x^{(l+1)}(w)) \sim P(\mathbb{X}_{v}^{(l)}) \otimes P(\mathbb{X}^{(l+1)})} \log \tau(x_{v}^{(l)}(u) \cdot x^{(l+1)}(w)) \\ + \mathbb{E}_{(x_{v}^{(l)}(u), x^{(l+1)}(w)) \sim P(\mathbb{X}_{v}^{(l)}) \otimes P(\mathbb{X}^{(l+1)})} \log \tau(-x_{v}^{(l)}(u) \cdot x^{(l+1)}(w))}$$

$$\min_{\theta} \sum_{\mathcal{G} \in \mathbb{G}_x} \sum_{l \in \{0, \dots, L-1\}} \mathcal{L}_{\mathcal{G}}^{(l)}$$

• Final Representation = concatenation of nodes, $\mathcal{R}^{(l)}(\mathcal{G}) = (\sum_{u \in V} x^{(l)}(u))^{T} \in \mathbb{R}^{k}$ at all scales

 $\mathcal{R}^{(l)}(\mathcal{G}) = \left(\sum_{l=1}^{l} \mathcal{G}_{l}\right)$

 $\mathcal{R}(\mathcal{G}) = [\mathcal{R}^{(0)}(\mathcal{G}), \mathcal{I}]$

 $\min_{\theta'} \sum_{\mathcal{G} \in \mathbb{G}_x}^{u \in v} \sum_{l \in \{0, \dots, L-1\}}^{u \in v} \mathcal{L}_{\mathcal{G}}^{(l)}$

$$\sum_{u \in V} x^{(l)}(u) \Big)^T \in \mathbb{R}^{1 \times q_s}$$
$$\mathcal{R}^{(1)}(\mathcal{G}), \dots, \mathcal{R}^{(L-1)}(\mathcal{G})] \in R^{Lq_s}$$

HG2V: Overview of the proposed method

Representations

HG2V: Numerical experiments – Dataset

	Méthodes	#graphe	#classe	#noeud moy.	#arête moy.
	PROTEIN	1113	2	39.06	72.82
	ENZYMES	600	6	32.63	64.14
	DD	1178	2	284.32	715.66
Biologie/Chimie	NCI1	4110	2	29.87	32.30
	NCI109	4127	2	29.68	32.13
	MUTAG	188	2	17.93	19.79
	PTC_FR	351	2	14.56	15
Réseaux	IMDB BINARY	1000	2	19.77	96.53
	IMDB MULTI	1500	3	13.00	65.94
	REDDIT BINARY	2000	2	429.63	497.75
	REDDIT 5K	4999	5	508.82	594.87
Synthótiques	FRANKENSTEIN	4337	2	16.90	17.88
Synthetiques	DLA	1000	2	500	499
	MNIST	10000	10	144	237.76
Images	USPS	9298	10	89.04	141.35
	FASHION-MNIST	10000	10	366.13	672.36

HG2V: Numerical experiments – Supervised Classification with SVM

Ieu de données HG2V Granh2V	Graph2Voc	Graph2Vec Infograph	DiffPool	GIN	MinCutPool	WL-OA	WW	
				(supervisé)	(supervisé)	(supervisé)	(noyau)	(noya
IMDB-m	47.9 ± 1.0	50.4 ± 0.9	49.6 ± 0.5	45.6 ± 3.4	48.5 ± 3.3	×	×	×
PTC_FR	67.5 ± 0.5	60.2 ± 6.9	×	×	×	×	63.6 ± 1.5	×
FRANK.	65.3 ± 0.7	60.4 ± 1.3	X	×	×	×	×	X
MUTAG	81.8 ± 1.8	83.1 ± 9.2	89.0 ± 1.1	×	×	×	84.5 ± 1.7	$87.3\pm$
IMDB-b	71.3 ± 0.8	63.1 ± 0.1	73.0 ± 0.9	68.4 ± 3.3	71.2 ± 3.9	×	×	$74.4\pm$
NCI1	76.3 ± 0.8	73.2 ± 1.8	×	76.9 ± 1.9	80.0 ± 1.4	×	86.1 ± 0.2	$85.8 \pm$
NCI109	75.6 ± 0.7	74.3 ± 1.5	×	×	×	×	86.3 ± 0.2	×
ENZYMES	66.0 ± 2.5	51.8 ± 1.8	×	59.5 ± 5.6	59.6 ± 4.5	×	59.9 ± 1.1	$73.3\pm$
PROTEINS	75.7 ± 0.7	73.3 ± 2.0	×	73.7 ± 3.5	73.3 ± 4.0	76.5 ± 2.6	76.4 ± 0.4	$77.9\pm$
MNIST	96.1 ± 0.2	56.3 ± 0.7	×	×	×	×	×	×
D&D	79.2 ± 0.8	58.6 ± 0.1	×	75.0 ± 3.5	75.3 ± 2.9	80.8 ± 2.3	79.2 ± 0.4	$79.7\pm$
REDDIT-b	91.2 ± 0.6	75.7 ± 1.0	82.5 ± 1.4	87.8 ± 2.5	89.9 ± 1.9	91.4 ± 1.5	89.3	×
DLA	99.9 ± 0.1	77.2 ± 2.5	×	×	×	×	×	×
REDDIT-5K	55.5 ± 0.7	47.9 ± 0.3	53.5 ± 1.0	53.8 ± 1.4	56.1 ± 1.7	×	×	×

Reference Method

Similar Performance

High variability Performance worse

Best Performance Quadratic in cost

HG2V: Numerical experiments – Visualisation (I)

HG2V: Numerical experiments – Visualisation (II)

IMDB-b

MNIST

=		:	

ļ		ł	:	:	
	-	******	*******	******	

HG2V: Conclusion on this part

• Additional experiments & features

- ✦ Ablative study -> Loukas' pooling needed on large graphs ; GNN needed on continuous features
- Experiments in inductive learning & transfer learning
- End-to-End differentiability

• To wrap-up

- A good, state-of-the-art, representation method for attributed graphs
- Linear in the number of input graphs -> scalable
- Training is unsupervised and inductive

 \rightarrow HG2vec = \mathbb{G}_x \longrightarrow

✦ Can be incorporated in larger models to solve whatever task

A Simple Model to Learn Metrics **Between Attributed Graphs**

 $\mathcal{G} = (A, X_1, X_2, \dots, X_M)$ From Yacouba Kaloga's thesis ; 12/2021

Joint work with Amaury Habrard (LabHC; Saint-Etienne)

An even lower-level task: compute distances

- Why? At the input of many (many!) methods
 - "Real" distances between graphs are often hard to compute (edit distance),
 - or can ignore some aspects (e.g. spectral distances),
 - and usually forget about attributes
- What for ? Parametric distances allow for Metric Learning
- cf. Tutorial on Metric Learning (A. Bellet), 2013 & https://arxiv.org/abs/1306.6709

Metric Learning for Attributed Graphs = Leveraging the structure **A Review of Existing Works**

- The main objective is to jointly code for topologies & attributes
- Existing Solutions :
 - In ML: low scalability when methods rely of GED (Graph Edit Distance)
 - In GSP: some works where topology G is set and distances between attributes on G

[Graph Optimal Transport, Maretic et al. NeuRIPS 2019]

- With kernels: usually nonparametric (exception multiple kernel learning)
- Change the point-of-view: Optimal Transport between distributions

Optimal Transport for Graphs or Attributed Graphs

- optimal coupling (or transport plan) between these 2
- cf. "Computational Optimal Transport" (G. Peyré & M. Cuturi), 2019

https://arxiv.org/abs/1803.00567v4

Problème de Monge : « Mémoire sur la théorie des déblais et des remblais », 1776

• Optimal Transport: compute a distance between 2 distributions, while finding the

Optimal Transport for Graphs or Attributed Graphs

on these
$$\mu = \sum_{\mathbf{x}_i \in \mathbb{X}} a_i \delta_{\mathbf{x}_i}$$
 and $\nu = \sum_{\mathbf{x}'_i \in \mathbb{X}'} b_i \delta_{\mathbf{x}'_i}$

$$\mathscr{W}_{2}(\boldsymbol{\mu},\boldsymbol{\nu}) = \inf_{\pi_{i,j}\in\Pi_{a,b}} \left(\sum_{i,j=1}^{n,n'} \pi_{i,j} c(\mathbf{x}_{i},\mathbf{x}_{j}')^{2}\right)^{\frac{1}{2}}$$

where $\Pi_{a,b}$ is the set of joint distributions on $\mathbb{X} \times \mathbb{X}'$ whose marginals are the distributions μ

• **Optimal Transport:** Consider two finite sets $\mathbb{X} = \{\mathbf{x}_i\}_{i=1}^{|\mathbb{X}|} \in \mathbb{R}^{q \times |\mathbb{X}|}$ and \mathbb{X}' and two distributions with $a_i \ge 0, b_i \ge 0$ and $\sum_{i=1}^{n} a_i = 1, \sum_{i=1}^{n'} b_i = 1$ i=1i=1

• Given a cost function $c : \mathbb{R}^q \times \mathbb{R}^q \to \mathbb{R}_+$, one build the 2-Wasserstein distance \mathcal{W}_2 as:

$$u = \sum_{\mathbf{x}'_i \in \mathbb{X}'} \pi(\cdot, \mathbf{x}'_i) \quad \text{and} \quad \nu = \sum_{\mathbf{x}_i \in \mathbb{X}} \pi(\mathbf{x}_i, \cdot)$$

Optimal Transport for Graphs or Attributed Graphs

- For Graphs: one has to Associate a distribution to a graph
 - We already have seen one: the Weisfeiler-Lehman method

- A second solution: The Gromov Wasserstein distance
 - [Mémoli, Found. Comp. Math. 2011; Peyré, Cuturi, Solomon, ICML 2016]
 - structures are compared through their pairwise distances A
 - cf. also N. Courty, R. Flamary,

- cf. Togninalli et al., "Wasserstein Weisfeiler-Lehman graph kernels" NeurIPS 2019

 $|c_{\mathcal{X}}(x,x')-c_{\mathcal{V}}(y)|$

T. Vayer [PhD 2020]

Optimal Transport for Graphs or Attributed Graphs

• One can **combine Attributes and Gromov** characterisation of graphs

- "Fused Gromov-Wasserstein distance" [Vayer et al., ICML 2019]

• Shameful advertisement: see The Diffusion Wasserstein distance, [Barbe et al. 2020-201]

Optimal Transport for Attributed Graphs, with Metric Learning

- The idea is to parametrize (graphs+attributes) through a GCN
 - Then compute distance between them by optimal transport

- Trainable parameters: the parameters of the GCN
 - Use an understandable GCN with few parameters (hence: not a deep one); Simple GCN
 - [Wu et al. "Simplifying graph convolutional networks". PLMR 2019]

Optimal Transport for Attributed Graphs, with Metric Learning and Reduced Computational Load • For Optimal Transport: Use the **Sliced methods**

• To Extract Features for Attributed Graphs: Simple GCN [2019]

$$\mathbf{Y} = \operatorname{ReLU}(\widetilde{\mathbf{A}}^r \mathbf{X} \boldsymbol{\Theta})$$

- [N. Bonneel et al., "Sliced and Radon Wasserstein barycenters of measures", JMIV 2015]

- Amounts to Graph Filtering (Feature Propagation) then standard Non-Linear Activation fct Initial attributes $X \in \mathbb{R}^{n \times q}$; Modified Adjacency matrix; New $A = A + I_n$ Features Y as

Metric Learningers' Attributed Graphs, with Optimal Transport and Reduced Computational Load

- **Objective function**?
- Go back to slide on Bellet et al.
- Here: a variant of NCA
- Nearest Class Cloud Metric Learning

Designed to boost 1-NN classif.

Maximize the probability for each graph to have is own label

Metric Learning for Attributed Graphs,

• Graph Datsets

Datasets	BZR	COX2	ENZYMES	MUTAG	NCI1	PTC-MR
#Graphs	405	467	600	188	4110	344
#Nodes	35.75	41.22	32.63	17.93	29.97	14.29
Node attributes	cont.	cont.	lab.	deg.	lab.	lab.
q	3	3	18	4	38	18

- Task of Supervised Classification
- k-Nearest Neighbors classifier
- SVM with induced kernel

Dataset	Continuou	s attributes		Discrete	attributes	
Method	BZR	COX2	MUTAG	NCI1	PTC-MR	
SGML - \mathcal{RPW}_2 (ML-kNN)	85.61 ± 2.98	79.79 ± 2.18	90.00 ± 7.60	72.12 ± 1.65	58.86 ± 5.88	4
Net-LSD-heat (1-NN)	×	×	84.90	65.89	55.30	
FGSD (1-NN)	×	×	86.47	75.77	60.28	
NetSimile (1-NN)	×	×	84.09	66.56	61.26	
SGML - \mathcal{RPW}_2 (ML-OT-SVM)	84.39 ± 3.81	78.51 ± 0.01	88.95 ± 7.61	74.84 ± 1.81	58.29 ± 6.29	Ę
WWL (OT-SVM)	84.42 ± 2.03	78.29 ± 0.47	87.27 ± 1.50	85.75 ± 0.25	66.31 ± 1.21	5
\mathcal{FSW} (OT-SVM)	85.12 ± 4.15	77.23 ± 4.86	83.26 ± 10.30	72.82 ± 1.46	55.71 ± 6.74	
\mathcal{FSW} -WL [p = 4] (OT-SVM)	×	×	88.42 ± 5.67	86.42 ± 1.63	65.31 ± 7.90	
HGK-SP (SVM)	76.42 ± 0.72	72.57 ± 1.18	×	×	×	
WL-OA (SVM)	-	-	87.15 ± 1.82	86.08 ± 0.27	60.58 ± 1.35	ļ
PSCN [K = 10] (GCN)	80.00 ± 4.47	71.70 ± 3.57	83.47 ± 10.26	70.65 ± 2.58	58.34 ± 7.71	

Numerical Experiments

Now is the time to conclude

- Non-Linear methods easily obtained thanks to GNN / GCN Évolution du système Vélo'v 00000
- Saturation of many ML (C
- => Favor the simpler met

Analyse du nombre de locations de Vélo'v

A way forward: Introduce

CNRS – ENS Lyon, Laboratoire de Physique (UMR 5672), Université de Lyon IXXI (Institut des Systèmes Complexes de Lyon)

• Last (still shameful) Adver

• Two examples of models for **Representation Learning of (Attributed) Graphs**

Modèle statistique 00000

Prédiction à l'heure 00

Conclusion \bigcirc

Première approche :

Pierre BORGNAT

23 octobre 2009

Lyon 'gnat

Supplements

More (visual) details on GCN vs. Simple GCN

[Kipf & Welling "Semi-supervised classification with graph convolutional networks". **ICLR 2017**]

[Wu et al. "Simplifying graph convolutional networks". PLMR 2019]

