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Computer vision & structural information

Computer vision : many situations

A. Garcia-Garcia, A survey on deep learning techniques for image and video semantic segmentation,
Applied Soft Computing, 2018
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Computer vision & structural information

Often ignored : relationships between entities → structural information
Spatial, photometric, textural, geometric...
Motivation : a priori stability and simplicity of model declaration
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"Liver tumors" : "... included in..."
"Hypodense" : "... darker than..."

"... darker than..."
".... similarly bright...."
"Obvious" inclusion relationships

"Text written on " : "... included in..."
Similar brightness of files

Geometric structures

O. Duchenne et al., IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011

J. Zhou et al., Journal of Visual Communication and Image Representation, 2015

J.B. Fasquel et al., IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019

I. Bloch, Fuzzy sets for image processing and understanding, Fuzzy Sets and Systems, 2015
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Computer vision & structural information

Preliminary semantic segmentation (e.g. CNN) + structural information = refined
segmentation

Relationships
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vessel
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liver

tumorvessel

deep neural network

How to exploit structural information ?
Combinatorial optimization tools (e.g.constraint satisfaction problem, quadratic
assignment problem)

Example : "On the right" + "Relative distances"
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J. Chopin, J.B. Fasquel, H. Mouchere, R. Dahyot, and I. Bloch, 2020 10th International Conference on Image Processing Theory, Tools and Applications

J. Maciel and J.P.Costeira, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003
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Computer vision & structural information

How to exploit structural information ?

Graph neural network (GNN) : learn the matching (node classification)

Constraints:

Managing graphs of arbitrary size (depends on the CNN output)

Managing both node and edge attributes

Z. Zhang et al., IEEE Transactions on Knowledge and Data Engineering, 2020

A. Zanfir et al., 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition

A. S. Nassar et al., Computer Vision - ECCV 2020 - 16th European Conference, 2020
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Overview

Deep 
Neural

NetworkAnnotated dataset

Inexact graph matching : many-to-one-or-noneA: Training

B: Semantic segmentation
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C: Graph neural network architecture
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Images and graphs

Deep 
Neural

Network

S

R

J

I

C

s(p,1)

G=(V,E,X,L)

Segmentation map: S ∈ RP×C from CNN

S(p, c) ∈ [0, 1]: probability of pixel p of belonging to class c

R: set of all resulting connected components

From R, construction of graph G = (V ,E ,X , L)
V : set of nodes (each v ∈ V corresponds to a region Rv ∈ R)
E : set of edges
X : V −→ RC : node attribute assignment function (average membership
probability vector over the set of pixels p ∈ Rv )
L : E −→ Rs: edge attribute assignment function (depends on the considered
spatial relationships)
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Graph neural network

co
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S
LP

Node classification:

arbitrary graph size

attributes on nodes and edges

Only 2 layers:

convolution: aggregating neighborhood information related to each node
(message passing)

single layer perceptron (SLP): Rd l+1
−→ RC , providing a class membership

probability vector to each node of the graph

D. Bacciu et al., Neural Networks, 2020
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Edge-conditioned convolution: ECConv
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For node i ∈ V , ECConv computes a new attribute X l+1(i) by combining different
information from layer l :

the attributes of the set N(i) of nodes (N(i) = {j |(j , i) ∈ E} ∪ {i})
the attributes of the set of related edges {L(j , i)|j ∈ N(i)}

M. Simonovsky et al., 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017)
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Edge-conditioned convolution: ECConv
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X l+1(i) =
1

|N(i)|
∑

j∈N(i)

F l+1(L(j , i))X l(j) + bl+1

=
1

|N(i)|
∑

j∈N(i)

Θl+1
ji X l(j) + bl+1

(1)

F l+1 : Rs −→ Rd l+1×d l
mapping function (a multi-layer perceptron in our case)

X l+1 is computed using the average operator (permutation invariant operator)

Dimensions of node attributes d l (l > 0) are hyperparameters

Several convolution layers could be cascaded (only one in this study)
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Dataset and preprocessing

Synthetic

Reference

G
Altered images

4 classes + background

100 altered images

FASSEG-Instances
GT CNN

100%

75%

8 classes + background

70 human faces

CNN: U-Net (splitting: 20/10/40)

Influence of the dataset size (100% / 75%)

https://github.com/Jeremy-Chopin/FASSEG-instances

J. Chopin et al., 2020 10th International Conference on Image Processing Theory, Tools and Applications (IPTA)

O. Ronneberger et al., Medical Image Computing and Computer-Assisted Intervention, 2015

15 / 23



Introduction Method Experiments Conclusion and perspectives

Graph construction

Synthetic

Node attributes: membership probability vector of the region Ri

Edge attributes: distance between barycenters of the connected regions Ri and Rj

(L(i , j) = |bi − bj |)

FASSEG

Extraction of large connected components (≤ 30 pixels): association to a node

Node attributes: membership probability vector of the region Ri

Edge attributes: minimum and maximum distance between the connected regions
Ri and Rj (L(i , j) = [d

Ri ,Rj
min , d

Ri ,Rj
max ])
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Coarsening

Impact of the size of the neighborhood

Coarsened graph based on edge properties L(i , j) Gc = (V ,Ec ,X , L), where Ec ⊆ E

Hyperparameter radius ρ: limit distance between regions

D. Bacciu et al., Neural Networks, 2020
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Results

Table: Graphs parameters for synthetic dataset and FASSEG. Values indicated are a mean over
all images of the test dataset. Number of classes (C), of nodes (|V |) and of edges (|E | and |Ec |),

where |Ec | is the number of edges after coarsening

Dataset C |V | |E | |Ec |
Synthetic 5 7 (max: 14) 44 (max: 90) 9 (max: 12)

FASSEG 100% 9 12 (max: 26) 172 (max: 650) 33 (max: 134)
FASSEG 75% 9 17 (max: 86) 378 (max: 3867) 99 (max: 728 )

Table: Results of classification of synthetic data with different configurations of graphs and
convolution operators.

Method Accuracy
ECConv (Gc) 1.00

ECConv 0.98
GCNConv* (Gc) 0.59

ECConv (no node attributes) 0.20

*GCNConv: does not consider edge attributes

T. Kipf et al., International Conference on Learning Representations, 2017
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Results: FASSEG

Table: Segmentation results on FASSEG with CNN only and CNN followed by GNN (using
ECConv or GCNConv). Complete graphs and coarsened ones are compared.

75% 100%
Method DSC B-DSC HD DSC B-DSC HD

CNN 0.798 0.675 54.40 0.845 0.745 27.20
ECConv 0.798 0.728 33.53 0.845 0.769 19.76

ECConv (Gc ) 0.804 0.731 32.00 0.845 0.759 22.80
GCNConv (Gc ) 0.537 0.470 124.87 0.599 0.516 100.95

GT CNN
ECConv -

coarsening ECConv 
GCNConv -
coarsening

GT CNN
ECConv -

coarsening ECConv 
GCNConv -
coarsening

100%

75%
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Conclusion

GNN-based technique with inexact graph matching procedure: improve
CNN-based image segmentation

Consideration of both node (CNN output) and edge (spatial relationships)
attributes with ECConv: promising preliminary results

Simple architecture (CONV + SLP) faster than combinatorial approaches likes
QAP (inference time ≤ 5s)

Structural information and graph coarsening makes algorithms more robust to
small dataset

Preliminary experiments to be improved (larger datasets, GNN-architecture, etc.)

P. Coupeau, J.-B. Fasquel, M. Dinomais, ”On the relevance of edge-conditioned convolution for GNN-based semantic image segmentation using spatial
relationships”, International Conference on Image Processing Theory, Tools and Applications, 2022 (accepted)
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Perspectives

Compare with more recent CNN-based method

Larger dataset, applications more complex (medical images, etc.)

M. Lou et al., Neurocomputing, 2022

S. Chen et al., Medical Image Analysis, 2022

C. Oyarzun Laura et al., Methods, 2021
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Perspectives

Benefit of coarsening: multi-coarsening ?
Parallel ?

→ Hyperparameter ρ ?
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Alternative: approach similar to GraphSAGE

→ to adapt to consider both node
and edge attributes

W. Hamilton et al., in Advances in Neural Information Processing Systems, 2017

https://www.arangodb.com/2021/08/a-comprehensive-case-study-of-graphsage-using-pytorchgeometric/ 23 / 23



Table: Segmentation results provided by the CNN only and our proposal. Results are provided for
each class (not the background): Hr (hair), Fc (face), L-br (left eyebrow), R-br (right eyebrow),

L-eye (left eye), R-eye (right eye), nose and mouth.

75% 100%
Method CNN Proposal CNN Proposal
Class DSC B-DSC HD DSC B-DSC HD DSC B-DSC HD DSC B-DSC HD

Hr 0.924 0.773 126.26 0.925 0.841 86.15 0.941 0.825 85.18 0.941 0.838 73.54
Fc 0.948 0.917 48.29 0.949 0.960 25.06 0.957 0.955 24.38 0.956 0.965 19.17

L-br 0.681 0.547 65.33 0.686 0.617 30.19 0.751 0.679 11.41 0.751 0.678 11.41
R-br 0.667 0.537 65.77 0.652 0.599 42.44 0.744 0.584 42.50 0.745 0.653 21.10
L-eye 0.783 0.670 36.47 0.804 0.707 23.06 0.865 0.740 19.88 0.865 0.782 10.11
R-eye 0.783 0.643 36.97 0.783 0.681 29.30 0.837 0.718 14.29 0.837 0.750 8.27
Nose 0.742 0.559 41.41 0.771 0.662 10.14 0.797 0.684 8.47 0.797 0.697 7.18
Mouth 0.859 0.752 14.69 0.858 0.779 9.42 0.867 0.770 11.46 0.867 0.791 7.31

1 / 2



GNN parameters

Nvidia Quadro RTX 3000 GPU - PyTorch libraries (torch geometric.nn)

optimizer: Adam

loss function: negative log likelihood

initial learning rate lr0 = 0.01, reduction factor σ = 5e − 4

Synthetic

250 epochs

d1=6

train: 70 / test: 30

FASSEG-Instances

600 epochs

d1=7

train: 30 / test: 40

https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html
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