On the relevance of edge-conditioned convolution for GNN-based semantic image segmentation using spatial relationships

Patty Coupeau^{1,2} Jean-Baptiste Fasquel¹

¹University of Angers, LARIS - Systems Engineering Research laboratory

²PhD student at the University of Angers

2 Method

3 Experiments

2 Method

3 Experiments

• Computer vision : many applications

Assembly & robolics

30 reconstruction

Automented reality

Experiments

Traceald Ny Idontification

video-surveillance

Introduction	Method	Experiments	Conclusion and perspectives
00000			
Computer vision & structu	Iral information		

• Computer vision : many situations

A. Garcia-Garcia, A survey on deep learning techniques for image and video semantic segmentation, Applied Soft Computing, 2018

Introduction	Method 000000	Experiments 000000	Conclusion and perspectives
Computer vision & structural information	on		

- $\bullet\,$ Often ignored : relationships between entities \rightarrow structural information
 - Spatial, photometric, textural, geometric...
 - Motivation : a priori stability and simplicity of model declaration

O. Duchenne et al., IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011

J. Zhou et al., Journal of Visual Communication and Image Representation, 2015

J.B. Fasquel et al., IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019

I. Bloch, Fuzzy sets for image processing and understanding, Fuzzy Sets and Systems, 2015

Introduction	Method	Experiments	Conclusion and perspectives
○○○○●○	000000	000000	
Computer vision & structural informati	on		

Preliminary semantic segmentation (e.g. CNN) + structural information = refined segmentation

How to exploit structural information ?

 Combinatorial optimization tools (e.g.constraint satisfaction problem, quadratic assignment problem)

Example : "On the right" + "Relative distances"

- J. Chopin, J.B. Fasquel, H. Mouchere, R. Dahyot, and I. Bloch, 2020 10th International Conference on Image Processing Theory, Tools and Applications
- J. Maciel and J.P.Costeira, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003
- M. C. Vanegas, I. Bloch and J. Inglada, Fuzzy Sets and Systems, 2016

Introduction	Method	Experiments	Conclusion and perspectives
00000			
Computer vision & structural information	on		

How to exploit structural information ?

• Graph neural network (GNN) : learn the matching (node classification)

Constraints:

- Managing graphs of arbitrary size (depends on the CNN output)
- Managing both node and edge attributes

Z. Zhang et al., IEEE Transactions on Knowledge and Data Engineering, 2020

A. Zanfir et al., 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition

A. S. Nassar et al., Computer Vision - ECCV 2020 - 16th European Conference, 2020

2 Method

3 Experiments

Method

Experiments

Segmentation map: $S \in R^{P \times C}$ from CNN

 $S(p, c) \in [0, 1]$: probability of pixel p of belonging to class c

R: set of all resulting connected components

From *R*, construction of graph G = (V, E, X, L)

- V: set of nodes (each $v \in V$ corresponds to a region $R_v \in R$)
- E: set of edges
- X : V → R^c: node attribute assignment function (average membership probability vector over the set of pixels p ∈ R_v)
- L : E → R^s: edge attribute assignment function (depends on the considered spatial relationships)

In	tr	00	lu	IC	ti	0	n

Graph neural network

Method ○○○●○○ Experiments

Conclusion and perspectives

Node classification:

- arbitrary graph size
- attributes on nodes and edges

Only 2 layers:

- convolution: aggregating neighborhood information related to each node (message passing)
- single layer perceptron (SLP): R^{dⁱ⁺¹} → R^C, providing a class membership probability vector to each node of the graph

D. Bacciu et al., Neural Networks, 2020

Experiments

Conclusion and perspectives

Edge-conditioned convolution: ECConv

For node $i \in V$, ECConv computes a new attribute $X^{l+1}(i)$ by combining different information from layer I :

- the attributes of the set N(i) of nodes $(N(i) = \{j | (j, i) \in E\} \cup \{i\})$
- the attributes of the set of related edges $\{L(j,i)|j \in N(i)\}$

M. Simonovsky et al., 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017)

 $F^{l+1}: \mathbf{R}^s \longrightarrow \mathbf{R}^{d^{l+1} \times d^l}$ mapping function (a multi-layer perceptron in our case) X^{l+1} is computed using the average operator (permutation invariant operator) Dimensions of node attributes d^l (l > 0) are hyperparameters Several convolution layers could be cascaded (only one in this study)

2 Method

3 Experiments

Dataset and preprocessing

Method

Experiments

Conclusion and perspectives

Synthetic

Altered images

4 classes + background

100 altered images

FASSEG-Instances

8 classes + background

70 human faces

CNN: U-Net (splitting: 20/10/40)

Influence of the dataset size (100% / 75%)

https://github.com/Jeremy-Chopin/FASSEG-instances

J. Chopin et al., 2020 10th International Conference on Image Processing Theory, Tools and Applications (IPTA)

O. Ronneberger et al., Medical Image Computing and Computer-Assisted Intervention, 2015

Introduction	Method 000000	Experiments	Conclusion and perspectives
Graph construction			

Synthetic

- Node attributes: membership probability vector of the region R_i
- Edge attributes: distance between barycenters of the connected regions R_i and R_j $(L(i,j) = |b_i - b_j|)$

FASSEG

- Extraction of large connected components (\leq 30 pixels): association to a node
- Node attributes: membership probability vector of the region R_i
- Edge attributes: minimum and maximum distance between the connected regions R_i and R_j ($L(i, j) = [d_{min}^{R_i, R_j}, d_{max}^{R_i, R_j}]$)

Introduction	Method 000000	Experiments	Conclusion and perspectives
Coarsening			

Impact of the size of the neighborhood

Coarsened graph based on edge properties L(i, j) $G_c = (V, E_c, X, L)$, where $E_c \subseteq E$ Hyperparameter radius ρ : limit distance between regions

Introduction	Method 000000	Experiments	Conclusion and perspectives
Results			

Table: Graphs parameters for synthetic dataset and FASSEG. Values indicated are a mean over all images of the test dataset. Number of classes (C), of nodes (|V|) and of edges $(|E| \text{ and } |E_c|)$, where $|E_c|$ is the number of edges after coarsening

Dataset	С	<i>V</i>	<i>E</i>	$ E_c $
Synthetic	5	7 (max: 14)	44 (max: 90)	9 (max: 12)
FASSEG 100%	9	12 (max: 26)	172 (max: 650)	33 (max: 134)
FASSEG 75%	9	17 (max: 86)	378 (max: 3867)	99 (max: 728)

Table: Results of classification of synthetic data with different configurations of graphs and convolution operators.

Method	Accuracy
ECConv (G _c)	1.00
ECConv	0.98
GCNConv* (G _c)	0.59
ECConv (no node attributes)	0.20

^{*}GCNConv: does not consider edge attributes

T. Kipf et al., International Conference on Learning Representations, 2017

Introduction	Method 000000	Experiments ○○○○○●	Conclusion and perspectives
Results: FASSEG			

Table: Segmentation results on FASSEG with CNN only and CNN followed by GNN (using ECConv or GCNConv). Complete graphs and coarsened ones are compared.

	75%				100%	
Method	DSC	B-DSC	HD	DSC	B-DSC	HD
CNN	0.798	0.675	54.40	0.845	0.745	27.20
ECConv	0.798	0.728	33.53	0.845	0.769	19.76
ECConv (G _c)	0.804	0.731	32.00	0.845	0.759	22.80
GCNConv (G _c)	0.537	0.470	124.87	0.599	0.516	100.95

2 Method

3 Experiments

Introduction	Method 000000	Experiments	Conclusion and perspectives ○●○○		
Conclusion					

- GNN-based technique with inexact graph matching procedure: improve CNN-based image segmentation
- Consideration of both node (CNN output) and edge (spatial relationships) attributes with ECConv: promising preliminary results
- Simple architecture (CONV + SLP) faster than combinatorial approaches likes QAP (inference time \leq 5s)
- Structural information and graph coarsening makes algorithms more robust to small dataset

Preliminary experiments to be improved (larger datasets, GNN-architecture, etc.)

P. Coupeau, J.-B. Fasquel, M. Dinomais, "On the relevance of edge-conditioned convolution for GNN-based semantic image segmentation using spatial relationships", International Conference on Image Processing Theory, Tools and Applications, 2022 (accepted)

Introduction	Method 000000	Experiments	Conclusion and perspectives
Perspectives			

- Compare with more recent CNN-based method
- Larger dataset, applications more complex (medical images, etc.)

M. Lou et al., Neurocomputing, 2022 S. Chen et al., Medical Image Analysis, 2022 C. Oyarzun Laura et al., Methods, 2021

Neighborhood Sampling of input graph at search depth K=1 Feature Aggregation for the target node 0 at K=1 with sampling

W. Hamilton et al., in Advances in Neural Information Processing Systems, 2017

https://www.arangodb.com/2021/08/a-comprehensive-case-study-of-graphsage-using-pytorchgeometric/

Table: Segmentation results provided by the CNN only and our proposal. Results are provided for each class (not the background): Hr (hair), Fc (face), L-br (left eyebrow), R-br (right eyebrow), L-eye (left eye), R-eye (right eye), nose and mouth.

	75%					100%						
Method	CNN			Proposal		CNN		Proposal				
Class	DSC	B-DSC	HD	DSC	B-DSC	HD	DSC	B-DSC	HD	DSC	B-DSC	HD
Hr	0.924	0.773	126.26	0.925	0.841	86.15	0.941	0.825	85.18	0.941	0.838	73.54
Fc	0.948	0.917	48.29	0.949	0.960	25.06	0.957	0.955	24.38	0.956	0.965	19.17
L-br	0.681	0.547	65.33	0.686	0.617	30.19	0.751	0.679	11.41	0.751	0.678	11.41
R-br	0.667	0.537	65.77	0.652	0.599	42.44	0.744	0.584	42.50	0.745	0.653	21.10
L-eye	0.783	0.670	36.47	0.804	0.707	23.06	0.865	0.740	19.88	0.865	0.782	10.11
R-eye	0.783	0.643	36.97	0.783	0.681	29.30	0.837	0.718	14.29	0.837	0.750	8.27
Nose	0.742	0.559	41.41	0.771	0.662	10.14	0.797	0.684	8.47	0.797	0.697	7.18
Mouth	0.859	0.752	14.69	0.858	0.779	9.42	0.867	0.770	11.46	0.867	0.791	7.31

Nvidia Quadro RTX 3000 GPU - PyTorch libraries (torch_geometric.nn)

- optimizer: Adam
- loss function: negative log likelihood
- initial learning rate $lr_0 = 0.01$, reduction factor $\sigma = 5e 4$

Synthetic

- 250 epochs
- *d*1=6
- train: 70 / test: 30

FASSEG-Instances

- 600 epochs
- d1=7
- train: 30 / test: 40

https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html