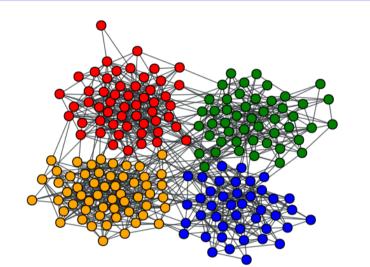
Spectral methods for graph clustering

Lorenzo Dall'Amico, Romain Couillet, Nicolas Tremblay

Email: lorenzo.dallamico@isi.it Website: lorenzodallamico.github.io

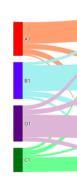
The "what"


- Graph spectral clustering
- Application to static, dynamical and weighted graphs

Graph clustering

Definition

- Partition the nodes of a graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$ in k groups according to the edge configuration
- Homophily: "similar" nodes are strongly connected
- Unsupervised learning task


Three applications

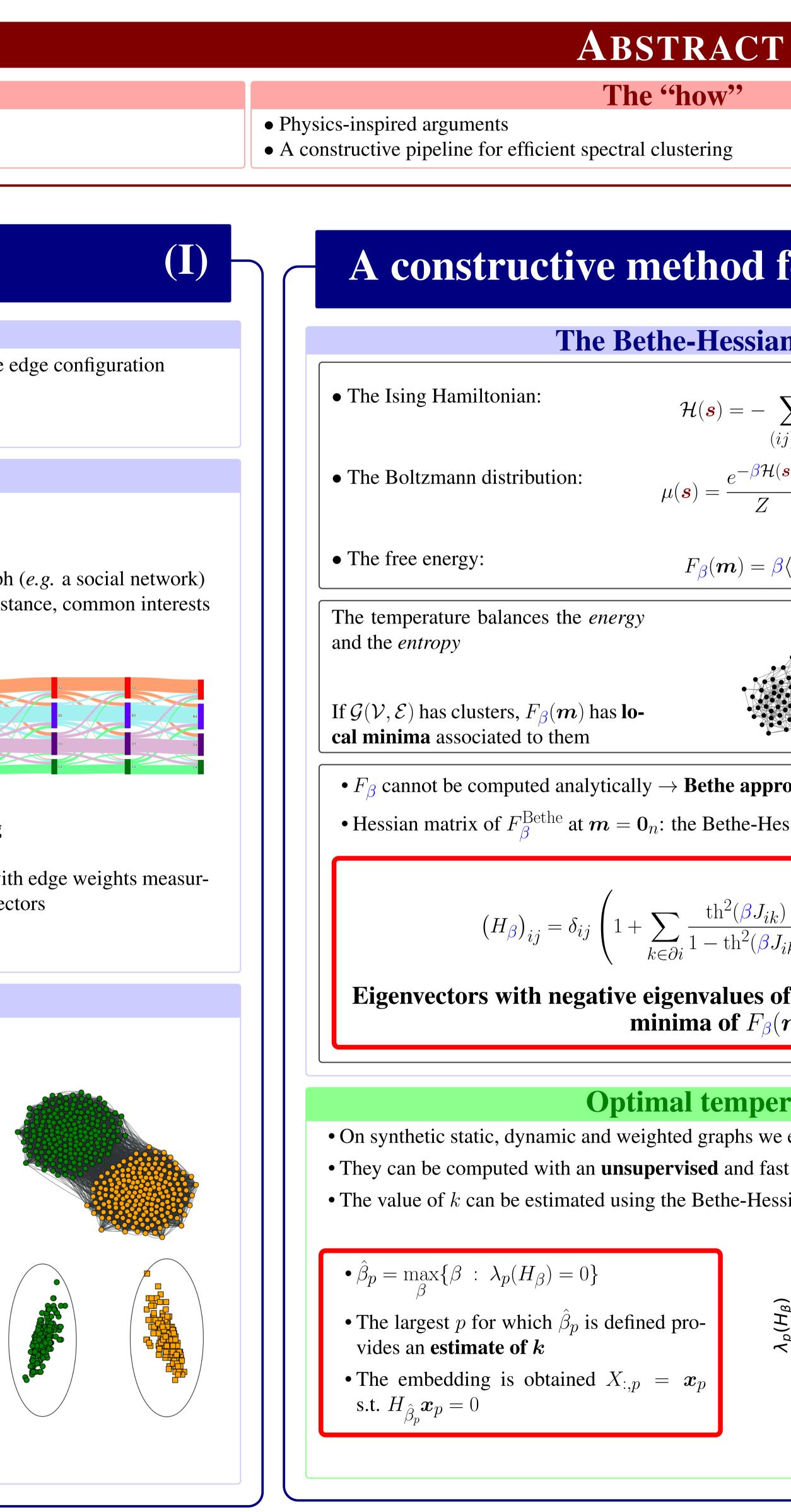
• Community detection INPUT: unweighted and undirected graph (*e.g.* a social network)

OUTPUT: affinity classes sharing, for instance, common interests

• Dynamical community detection INPUT: a temporal graph sequence OUTPUT: time-dependent evolution of the affinity classes

• High dimensional vectors clustering INPUT: a set of feature vectors REPRESENTATION: a weighted graph with edge weights measuring the proximity between the feature vectors

Spectral clustering

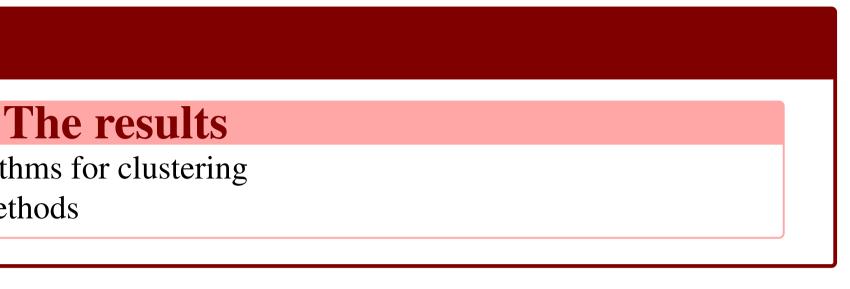

OUTPUT: clustering of the input data

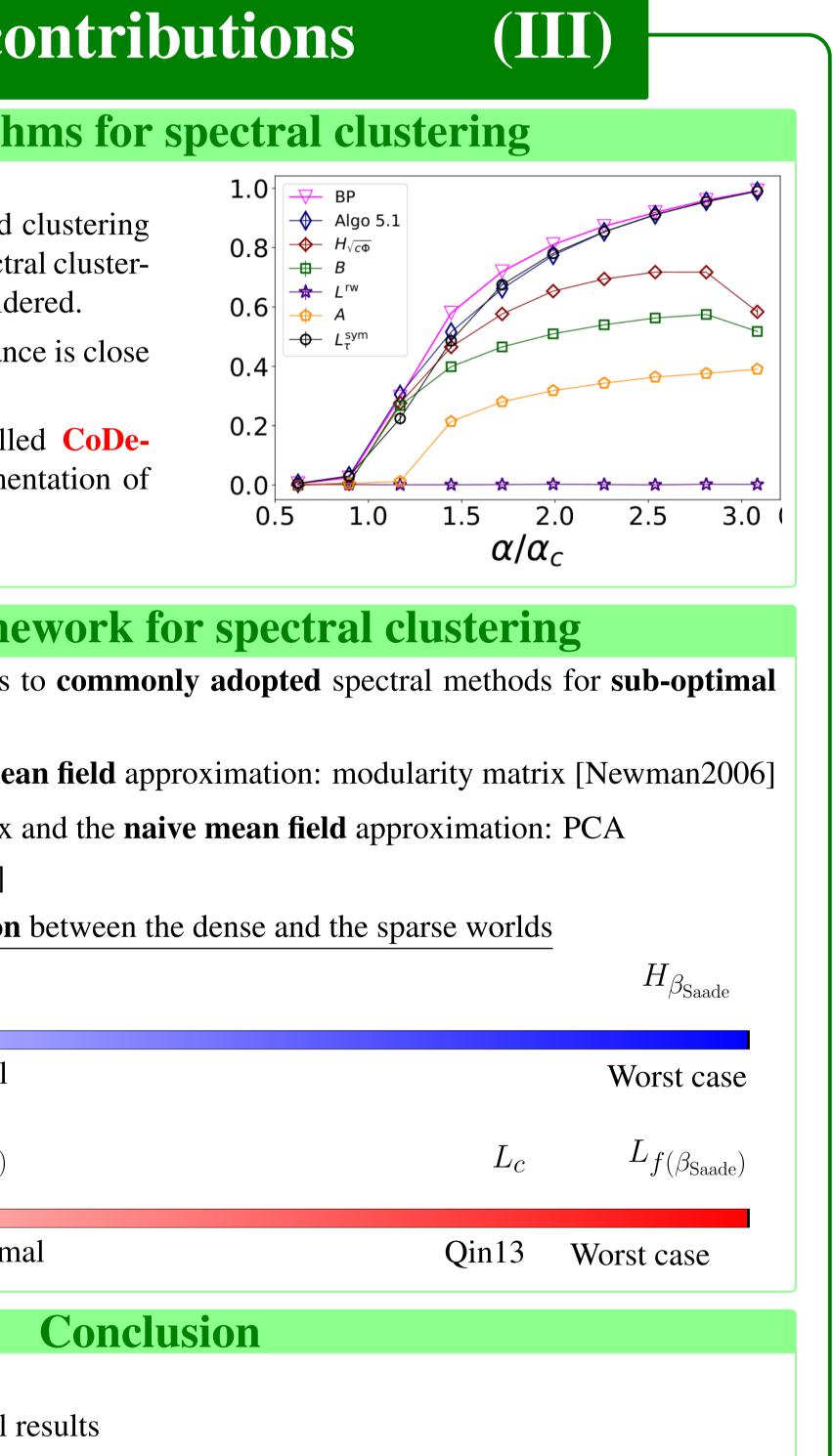
Basic idea

- Define a graph matrix representation M $(A, D - A, D^{-1/2}AD^{-1/2})$
- Compute $X \in \mathbb{R}^{n \times k}$ with $X_{:,i}$ the eigenvector associated with the i-th smallest or largest eigenvalue of M
- The row $X_{i,:}$ maps node i to a \mathbb{R}^k

Spectral clustering in sparse graphs

- **Sparsity** is a *necessary* problem to deal with
- For community detection **unrelated contributions** suggest that *regularization* helps spectral clustering in sparse graphs $H_r = (r^2 - 1)I_n + D - rA, L_\tau = D_\tau^{-1/2}AD_\tau^{-1/2}$ with $D_\tau = D + \tau I_n$
- What is the **optimal** regularization?
- Are the **dense** and **sparse** worlds to be treated **separately**?
- Can we design a **constructive pipeline** for spectral clustering?


My PhD manuscript



• Practical and highly performing algorithms for clustering • A unified interpretation of different methods

for clustering (II)		Main co
n matrix	N	lew algorith
$\sum_{j)\in\mathcal{E}} J_{ij}s_is_j, \text{ with } \mathbf{s} \in \{-1,1\}^n$ $\mathbf{s} = \{-1,1\}^n$ $\mathbf{s} = \{-1,1\}^n$ $\mathbf{s} = \{-1,1\}^n$ $\mathbf{s} = \{-1,1\}^n$	 The optimal Beth leads to SOA perforing in all three ap On synthetic datas to Bayes optimal 	ormances in spectr plications conside
$\langle \mathcal{H}(\boldsymbol{s}) \rangle_{\mu} - S_{\mu}, \text{ with } \boldsymbol{m} = \langle \boldsymbol{s} \rangle_{\mu}$	• We released a Ju BetHe.jl with an our algorithms	
		nified frame
	Our constructive me approximations or va	thod (II) reduces t
Dether	• For $J = A - \frac{dd^T}{2 \mathcal{E} }$	and the naive me a
Eximation $F^{\text{Bethe}}_{\beta}(\boldsymbol{m})$	• For J the feature covariance matrix a	
sian matrix	• For $\beta \to \infty$: $D -$	A [Fiedler1973]
	$\underline{\mathbf{A} \mathbf{s}}$	mooth transition
$-\frac{\operatorname{th}(\beta J_{ij})}{1-\operatorname{th}^2(\beta J_{ij})}$	D-A	$H_{eta_{ m opt}}$
$1 - \text{th}^2(\beta J_{ij})$	Trivial	Optimal
to approximate the local	$D^{-1/2}AD^{-1/2}$	$L_{f(eta_{ ext{opt}})}$
	Trivial	Optima
ure		
blished the optimal temperatures <i>β</i>	• Self-adapting alg	orithms
gorithm	• Bridge between several theoretical r	
n matrix	• Definition of a constructive pipelin	
3 -	Possibility to exte	end the temper
4 -		
0 -		ACKNO
	The work has been co Romain Couillet and	
0.2 0.6 1.0 1.4 β	nent staff and PhD stu	

ine for spectral clustering either

rature-aware pipeline to more involved settings?

OWLEDGMENTS

SA lab in Grenoble during my PhD under the supervision of blay. I further acknowledge the support from all the perma-IA team.