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ABSTRACT
The “what”

• Graph spectral clustering
• Application to static, dynamical and weighted graphs

The “how”
• Physics-inspired arguments
• A constructive pipeline for efficient spectral clustering

The results
• Practical and highly performing algorithms for clustering
• A unified interpretation of different methods

Graph clustering (I)

Definition
• Partition the nodes of a graph G(V , E) in k groups according to the edge configuration

• Homophily: “similar” nodes are strongly connected

• Unsupervised learning task

Three applications

• Community detection
INPUT: unweighted and undirected graph (e.g. a social network)
OUTPUT: affinity classes sharing, for instance, common interests

• Dynamical community detection
INPUT: a temporal graph sequence
OUTPUT: time-dependent evolution of the affinity classes

• High dimensional vectors clustering
INPUT: a set of feature vectors
REPRESENTATION: a weighted graph with edge weights measur-
ing the proximity between the feature vectors
OUTPUT: clustering of the input data

Spectral clustering
Basic idea
• Define a graph matrix representation M

(A, D − A, D−1/2AD−1/2)

• Compute X ∈ Rn×k with X:,i the eigenvector associated
with the i-th smallest or largest eigenvalue of M

• The row Xi,: maps node i to a Rk

Spectral clustering in sparse graphs
• Sparsity is a necessary problem to deal with

• For community detection unrelated contributions suggest
that regularization helps spectral clustering in sparse graphs
Hr = (r2 − 1)In +D − rA, Lτ = D

−1/2
τ AD

−1/2
τ with Dτ = D + τIn

• What is the optimal regularization?

• Are the dense and sparse worlds to be treated separately?

• Can we design a constructive pipeline for spectral clustering?
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A constructive method for clustering (II)

The Bethe-Hessian matrix

• The Ising Hamiltonian:

• The Boltzmann distribution:

• The free energy:

H(s) = −
∑

(ij)∈E
Jijsisj, with s ∈ {−1, 1}n

µ(s) =
e−βH(s)

Z
, with β the inverse temperature

Fβ(m) = β〈H(s)〉µ − Sµ, withm = 〈s〉µ

The temperature balances the energy
and the entropy

If G(V , E) has clusters, Fβ(m) has lo-
cal minima associated to them

• Fβ cannot be computed analytically→ Bethe approximation FBethe
β (m)

• Hessian matrix of FBethe
β atm = 0n: the Bethe-Hessian matrix

(
Hβ
)
ij
= δij

1 +
∑
k∈∂i

th2(βJik)

1− th2(βJik)

− th(βJij)

1− th2(βJij)

Eigenvectors with negative eigenvalues of Hβ to approximate the local
minima of Fβ(m)

Optimal temperature
• On synthetic static, dynamic and weighted graphs we established the optimal temperatures β
• They can be computed with an unsupervised and fast algorithm

• The value of k can be estimated using the Bethe-Hessian matrix

• β̂p = max
β
{β : λp(Hβ) = 0}

• The largest p for which β̂p is defined pro-
vides an estimate of k

• The embedding is obtained X:,p = xp
s.t. H

β̂p
xp = 0
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Main contributions (III)
New algorithms for spectral clustering

• The optimal Bethe-Hessian based clustering
leads to SOA performances in spectral cluster-
ing in all three applications considered.

• On synthetic datasets the performance is close
to Bayes optimal

• We released a Julia package called CoDe-
BetHe.jl with an efficient implementation of
our algorithms

A unified framework for spectral clustering
Our constructive method (II) reduces to commonly adopted spectral methods for sub-optimal
approximations or values of β:

• For J = A− ddT

2|E| and the naive mean field approximation: modularity matrix [Newman2006]

• For J the feature covariance matrix and the naive mean field approximation: PCA

• For β →∞: D − A [Fiedler1973]

A smooth transition between the dense and the sparse worlds

D − A Hβopt HβSaade

Trivial Optimal Worst case

D−1/2AD−1/2 Lf (βopt) Lc Lf (βSaade)

Trivial Optimal Qin13 Worst case

Conclusion
• Self-adapting algorithms

• Bridge between several theoretical results

• Definition of a constructive pipeline for spectral clustering either

Possibility to extend the temperature-aware pipeline to more involved settings?
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