
Graph Shift Operators and Their Relevance to
Graph Neural Networks

Johannes Lutzeyer

Data Science and Mining Team, Laboratoire d’Informatique,

École Polytechnique, Institut Polytechnique de Paris

March 8, 2022

Today I present work was done in collaboration with:

George Dasoulas
CIFRE PhD LIX & Huawei

Dr. Mohamed E. A. Seddik
Researcher Huawei

Dr. Changmin Wu
Postdoctoral Researcher LIX

Dr. Romain Hennequin
Lead Research Scientist

Deezer

Dr. Guillaume Salha Galvan
CIFRE PhD LIX & Deezer

Prof. Michalis Vazirgiannis
Distinguished Professor LIX

1/26

Graph Neural Networks

Graph Neural Networks (GNNs) are neural networks that take graph-structured
data as input.

We consider graph-structured data to be the
combination of

• a graph G = (V ,E);

• node-features X = [x1, . . . , xn]
T .

In this talk we will only see a specific type of
GNN, the Message Passing Neural Networks.

m(k)
v = M(k)

({
h(k−1)
w : w ∈ N (v)

})
,

h(k)
v = U(k)

(
h(k−1)
v ,m(k)

v

)
.

E.g., the Graph Convolutional Network (GCN,
Kipf and Welling, 2017)

H(1) = ReLU
(
ÃXW (1)

)
.

x1

x2

x3

x4 x5

x6 x7

x8

Other examples of popular GNN architectures are the GIN (Xu et al., 2019),
GraphSage (Hamilton et al., 2017) and GAT (Veličković et al., 2018).

2/26

Academic and Industrial Success of GNNs

Rich ground for empirical and theoretical research

• expressivity analysis of different message passing operators (Xu et al.,
2019; Morris et al., 2019);

• analysis of their robustness to adversarial attacks and noise (Günnemann,
2022; Sun et al., 2020; Zhou et al., 2020).

Successful applications of GNNs:

• Google: Improved Estimated Time of Arrival estimation in Google Maps
(Lange and Perez, 2020);

• Twitter : Fake news detection (Bronstein, 2020);

• even helped discover a new antibiotic (Stokes et al., 2020).

3/26

Graph Shift Operators

Definition

Graphs G = (V ,E) can be represented using:

• adjacency matrix A ∈ {0, 1}n×n where Aij = 1 iff (i , j) ∈ E .

• unnormalised graph Laplacian matrix L = D − A, where D = diag(A1n).

• symmetric normalised graph Laplacian matrix Lsym = D−1/2LD−1/2 and
random-walk normalised Laplacian matrix Lrw = D−1L.

A =

(0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

)
L =

(
2 −1 0 −1

−1 2 −1 0
0 −1 2 −1

−1 0 −1 2

)
Lsym =

(
1 −0.5 0 −0.5

−0.5 1 −0.5 0
0 −0.5 1 −0.5

−0.5 0 −0.5 1

)

Definition (Sandryhaila and Moura, 2013)

A matrix S ∈ Rn×n is called a Graph Shift Operator (GSO) if it satisfies:
Sij = 0 for i ̸= j and (i , j) /∈ E .

4/26

GSOs in Representation Learning

• Spectral clustering:

(a)(a) (b)(b) (c)(c)

Spectral clustering of the karate network using A in (a), L in (b)
and Lrw in (c) (Lutzeyer, 2020).

• Graph Neural Networks (GNNs), e.g., GCN (Kipf and Welling, 2017)

H(l+1) = σ
(
D

− 1
2

1 A1D
− 1

2
1 H(l)W (l)). (1)

The sum-based aggregator in the GIN (Xu et al., 2019) corresponds to the
use of the adjacency matrix A.

In Message Passing Neural Networks, the choice of message passing function
corresponds to a choice of GSO.

5/26

Overview of the Talk

Recall,

• GNN: neural networks that process graph-structured data

• GSO: matrices that represent graphs

In this talk,

1) learn optimal GSO in GNNs;

2) introduce node feature information to GSO to robustify GNNs;

3) introduce global cluster information to GSO in Graph Autoencoders.

6/26

1) Learning Parametrised Graph Shift Operators

Dasoulas, Lutzeyer & Vazirgiannis (2021, ICLR)

7/26

Motivation to Learn GSOs

• When introducing the different standard GSO choices Butler and Chung
(2017) state: “No one matrix is best because each matrix has its own
limitations in that there is some property which the matrix cannot always
determine”.

• Graph signal processing literature: the GSO choice involves “different
tradeoffs” and leads to different signal models (Deri and Moura, 2017;
Ortega et al., 2018). Therefore, they recommend using whichever GSO
works best in a particular analysis or learning task.

Research Questions

Question 1: Is there a single optimal representation to encode graph structures
or is the optimal representation task- and data-dependent?
Question 2: Can we learn such an optimal representation to encode graph
structure in a numerically stable and computationally efficient way?

8/26

Parametrised Graph Shift Operators

Definition

We define the Parametrised Graph Shift Operator (PGSO), denoted by
γ(A,S), as

γ(A,S) = m1D
e1
a +m2D

e2
a AaD

e3
a +m3In, (2)

where Aa = A+ aIn, Da = Diag(Aa1n) and S = (m1,m2,m3, e1, e2, e3, a) .

S=(m1, m2, m3, e1, e2, e3, a) Operator Description

(0, 1, 0, 0, 0, 0, 0) A
Adjacency matrix and Summation
Aggregation Operator of GNNs

(1,−1, 0, 1, 0, 0, 0) D − A Unnormalised Laplacian matrix L

(1, 1, 0, 1, 0, 0, 0) D + A Signless Laplacian matrix Q (Cvetkovic et al., 1997)

(0,−1, 1, 0,−1, 0, 0) In − D−1A Random-walk Normalised Laplacian Lrw

(0,−1, 1, 0, − 1
2
, − 1

2
, 0) In − D− 1

2 AD− 1
2 Symmetric Normalised Laplacian Lsym

(0, 1, 0, 0, − 1
2
, − 1

2
, 1) D

− 1
2

1
A1D

− 1
2

1

Normalised Adjacency matrix of GCNs
(Kipf and Welling, 2017)

(0, 1, 0, 0,−1, 0, 0) D−1A
Mean Aggregation Operator of GNNs

(Xu et al., 2019)

9/26

PGSO in Graph Neural Networks

Notation:

• ϕ(A) : [0, 1]n×n → Rn×n denotes a non-parametrised function of A.

• X ∈ Rn×d denotes the node feature matrix.

• M(ϕ(A),X) denotes a GNN model.

• K number of aggregation layers in a GNN.

Utilization of PGSO in GNNs

1. GNN-PGSO: M(ϕ(A),X) → M′(γ(A,S),X).

2. GNN-mPGSO (multi-PGSO): M(ϕ(A),X) → M′′(γ[K](A,S [K]),X),
where γ[K](A,S [K]) = [γ(A,S1), . . . , γ(A,SK)].

• Put simply, we replace the GSO used in a GNN model by γ(A,S).

10/26

Convolutions and Message-Passing

• Examples of utilisation of GNN-PGSO models

1. GCN (Kipf & Welling, 2017): The propagation rule is

H(l+1) = σ
(
D

− 1
2

1 A1D
− 1

2
1 H(l)W (l)),

where W (l) is a weight matrix and σ is a non-linear activation function.
The GCN-PGSO and GCN-mPGSO models are defined, respectively, as

H(l+1) = σ
(
γ(A,S)H(l)W (l)) and H(l+1) = σ

(
γ(A,S l)H(l)W (l)).

2. GIN (Xu et al., 2019): The propagation rule is

h
(l+1)
i = σ

(
h
(l)
i W (l) +

∑
j :vj∈N (vi)

h
(l)
j W (l)

)
.

The GIN-PGSO model is defined as

h
(l+1)
i = σ

((
m1 (Da)

e1
i +m3

)
h
(l)
i W (l) +

∑
j :vj∈N (vi)

ϵijh
(l)
j W (l)

)
,

where ϵij are edge weights defined as ϵij = m2 (Da)
e2
i (Da)

e3
j .

11/26

Spectral Analysis

Theorem

γ(A,S) has real eigenvalues and a set of real eigenvectors independent of the
parameters chosen in S.

Theorem

Let Ci = m1(di + a)e1 +m2(di + a)e2+e3a+m3 and Ri = |m2|(di + a)e2+e3di ,
where di denotes the degree of node vi . Furthermore, we denote eigenvalues of
γ(A,S) by λ1 ≤ λ2 ≤ . . . ≤ λn. Then, for all j ∈ {1, . . . , n},

λj ∈
[

min
i∈{1,...,n}

(Ci − Ri) , max
i∈{1,...,n}

(Ci + Ri)

]
. (3)

• For the parametrisation of γ(A,S) corresponding to the adjacency matrix,
we obtain the spectral support [−dmax, dmax], as required.

• For the message passing operator in the GCN, we obtain the following
bounds on the spectral support [−(dmax − 1)/(dmax + 1), 1], the lower
bound of this interval tends to -1 as dmax → ∞.

12/26

Spectral Analysis: Empirical Observation

0 20 40 60 80 100
Epochs

10

5

0

5

10

S
p

e
ct

ra
l
b

o
u
n
d

s

0 20 40 60 80 100
Epochs

0.5

0.0

0.5

1.0

1.5

P
a
ra

m
e
te

r
V

a
lu

e
s

m1

m2

m3

e1

e2

e3

a

(a) (b)

• Surprisingly, the spectral support of the PGSO remains centered at 0
throughout training.

• We observe the parameters of the PGSO to be smoothly varying
throughout training.

13/26

γ(A,S) on Stochastic Block Models (SBMs) of varying Sparsity

Setup:

• 15 decreasing p, q combinations.

• Fixed detectability level.

• ∀(p, q) 25 sampled graphs with 3
200-node communities.

• Node classification (Dwivedi et
al., 2020).

• 3-layer GCN-PGSO model.

SBM adjacency matrices.

Remarks:

• The additive parameter a increases
with the increasing sparsity.

• The remaining parameters remain
close to constant.

• confirms the positive impact of
GSO regularisation (Dall’Amico et
al., 2020; Qin and Rohe, 2013)

0.50 0.48 0.46 0.44 0.42 0.40 0.38 0.36 0.34 0.32 0.30 0.28 0.26 0.24 0.22
Probability p

2

1

0

1

2

3

4

PG
SO

 P
ar

am
et

er
s

m1
m2
m3
e1
e2
e3
a

Mean/std of the PGSO parameters

14/26

Results on Real-world Datasets

• Evaluation in 8 node classification and graph classification tasks.

• Model design with 4 architectures: GCN, SGC, GAT and GIN models.

• 3 GSO variants for each model: Standard, PGSO and mPGSO.

• For all datasets and architectures, the incorporation of the PGSO and the
mPGSO enhances the model performance.

• The impact of PGSO is higher in graph classification tasks.

• There is no clear winner between PGSO and mPGSO.

• Our code is publicly available: https://github.com/gdasoulas/PGSO.

https://github.com/gdasoulas/PGSO

15/26

2) Node Feature Kernels Increase Graph
Convolutional Network Robustness

Seddik, Wu, Lutzeyer & Vazirgiannis (2022, AISTATS)

16/26

Let’s begin with the Highlights

Recall, a GNN takes two inputs: the graph structure and node features.

Our Observation

If the graph is sufficiently perturbed then the GCN fails to benefit from the
node features no matter how informative they are.

Intuitive explanation: Node features are aggregated over graph
neighbourhoods. If these neighbourhoods are random, then we are aggregating
random subsets of node features.

This can be addressed by replacing the GCN’s GSO Ã = D
− 1

2
1 A1D

− 1
2

1 by

Ã+ diag((K ◦ A)1)−
1
2 (K ◦ A)diag((K ◦ A)1)−

1
2 ,

where K = XXT and ◦ denotes the elementwise multiplication.

Further research should be done on:

1) better choices of kernel function;

2) more informative sparsification schemes.

17/26

The Random GCN

This result was obtained in a random matrix theory analysis of our one-layer
RandomGCN

σ(ÃXW) with Wij ∼ N (0, 1).

Under the assumptions that,

• Node features follow a Gaussian Mixture Model.

• Graph Structure follows a Stochastic Block Model (SBM).

• Growth Rate Assumptions on the number of nodes, feature dimension and
dimension of the random matrix W and edge probabilities.

• Regularity Assumptions on the activation function σ(·).
we established,

(Informal) Theorem

The extent to which the labels vector correlates with the informative
eigenvector of the Gram matrix of our RandomGCN depends on the presence of
cluster structure in the SBM.

18/26

Experiments: Stochastic Blockmodels

Edge Deletion
α proportion of original edges removed

Original Edge Insertion
β proportion of added edges

• 2-community SBMs with no community structure, weakly homophilic
communities and weakly heterophilic communities.

• GCN-k denotes the GCN including the node feature kernel.

SBM(p = 0.25, q = 0.25) SBM(p = 0.275, q = 0.25) SBM(p = 0.225, q = 0.25)
(α, β) GCN GCN-k GCN GCN-k GCN GCN-k

(0.0, 0.0) 50.53 ± 0.49 66.36 ± 0.81 64.42 ± 0.43 62.26 ± 1.04 63.20 ± 0.94 61.03 ± 1.08

Deletion
(0.2, 0.0) 51.03 ± 0.56 65.44 ± 1.07 58.63 ± 0.68 71.57 ± 1.42 60.89 ± 0.83 54.91 ± 1.00
(0.5, 0.0) 49.29 ± 0.59 64.14 ± 1.01 60.76 ± 1.29 68.80 ± 2.04 58.41 ± 1.11 59.51 ± 2.47

Insertion
(0.0, 0.5) 50.57 ± 0.75 68.57 ± 1.25 60.49 ± 0.40 68.20 ± 1.38 58.82 ± 1.16 63.54 ± 0.97
(0.0, 1.0) 49.19 ± 0.47 59.31 ± 0.58 53.67 ± 1.11 66.57 ± 1.73 54.87 ± 0.53 60.84 ± 0.75

Delet.+Insert.
(0.5, 0.5) 49.26 ± 0.59 68.84 ± 0.86 50.50 ± 0.37 63.36 ± 1.67 50.94 ± 0.86 63.02 ± 0.91
(0.5, 1.0) 49.84 ± 0.69 65.49 ± 1.22 48.34 ± 0.22 60.16 ± 1.21 49.23 ± 0.45 59.64 ± 1.33

The addition of the node feature kernel improves the GCN’s robustness
against edge-deletion and edge insertion noise.

19/26

Experiments: Real World Datasets

Cora CiteSeer PubMed
(α, β) GCN GCN-k GCN GCN-k GCN GCN-k

(0.0, 0.0) 79.37 ± 0.65 76.94 ± 0.35 67.45 ± 0.82 68.08 ± 0.91 76.04 ± 0.67 74.68 ± 0.76

Deletion
(0.2, 0.0) 76.15 ± 0.81 74.83 ± 1.24 66.79 ± 0.57 66.94 ± 0.82 75.82 ± 0.99 74.28 ± 0.39
(0.5, 0.0) 72.49 ± 0.50 71.18 ± 1.00 63.53 ± 0.75 64.84 ± 1.14 73.95 ± 0.64 73.25 ± 0.75

Insertion
(0.0, 0.5) 68.57 ± 0.73 73.10 ± 1.10 59.85 ± 0.89 66.11 ± 1.34 64.18 ± 0.67 72.38 ± 0.79
(0.0, 1.0) 64.14 ± 1.02 73.36 ± 0.98 55.39 ± 0.93 64.94 ± 0.77 60.56 ± 0.80 71.31 ± 0.51

Delet.+Insert.
(0.5, 0.5) 54.98 ± 1.13 66.46 ± 1.03 52.84 ± 0.68 59.03 ± 1.04 62.62 ± 0.72 70.32 ± 0.82
(0.5, 1.0) 48.09 ± 0.88 62.52 ± 0.59 42.28 ± 1.07 58.07 ± 1.34 53.25 ± 1.57 69.65 ± 0.60

CoraFull Photo CS
(α, β) GCN GCN-k GCN GCN-k GCN GCN-k

(0.0, 0.0) 57.21 ± 0.84 56.88 ± 0.48 90.94 ± 0.49 90.09 ± 0.65 92.89 ± 0.41 92.63 ± 0.31

Deletion
(0.2, 0.0) 57.25 ± 0.67 55.56 ± 0.69 91.87 ± 0.40 92.19 ± 0.45 90.58 ± 0.48 90.89 ± 0.48
(0.5, 0.0) 53.90 ± 0.70 54.62 ± 0.87 91.10 ± 0.40 87.97 ± 0.54 89.75 ± 0.60 91.27 ± 0.67

Insertion
(0.0, 0.5) 48.11 ± 0.89 51.79 ± 0.65 82.79 ± 1.43 84.18 ± 1.27 87.16 ± 0.65 90.81 ± 0.70
(0.0, 1.0) 41.76 ± 1.03 51.91 ± 1.00 72.70 ± 6.40 79.58 ± 1.80 80.34 ± 0.80 90.61 ± 0.37

Delet.+Insert.
(0.5, 0.5) 34.70 ± 0.47 46.50 ± 0.61 69.70 ± 3.70 74.65 ± 2.36 73.75 ± 0.98 87.28 ± 0.72
(0.5, 1.0) 27.50 ± 1.04 43.04 ± 0.77 61.13 ± 2.49 63.73 ± 5.04 66.26 ± 0.95 87.51 ± 0.58

• On real world datasets insertion noise seems to have a greater impact,
which can largely be compensated by the node feature kernel.

• We also observed similar behaviour for other GNN architectures (GIN,
GraphSage and GAT).

• Our code is publicly available:
https://github.com/ChangminWu/RobustGCN.

https://github.com/ChangminWu/RobustGCN

20/26

3) Modularity-Aware Graph Autoencoders for Joint
Community Detection and Link Prediction

Salha-Galvan, Lutzeyer, Dasoulas, Hennequin & Vazirgiannis (2022)

21/26

Graph Autoencoders (GAEs)

A

X

Encoder
(GNN) Z

Decoder
(e.g. σ(ZZT)) Â

Graph Autoencoders (GAEs):

• typically consist of the composition of a GNN with an inner product
decoder reconstructing the graph structure.

• learn low-dimensional representations Z in an unsupervised manner.

• currently find industrial use in recommendation systems.

22/26

Motivation of our Project

Research Problem

Graph Autoencoders are very good at link prediction and often underwhelming
in community detection. Learning node embeddings Z that enable good
performance in both tasks is desirable for real-world applications.

Our Modularity-Aware Graph Autoencoders address this problem by

• using a different GSO in the encoder’s message passing scheme.

• modifying the loss function to consider a softened version of the modularity.

• considering both the clustering’s modularity and the classification AUC in
the hyperparameter selection.

To stay on topic, we will discuss only the first of these contributions.

23/26

Introducing Global Cluster Information to the Message Passing Step

Steps of our method modifying the encoder (GNN):

1) We run the Louvain algorithm to cluster the graph.

• Automatically determines the number of communities.
• It’s fast O(n log n).
• It maximises the modularity, which complements our other

contributions.

2) We define a graph with adjacency Ac composed of fully connected
components corresponding to the communities obtained in step 1).

3) We randomly sample s neighbours for each node in its fully connected
component to define a subgraph represented by As .

4) We replace A in the GNN encoder by

A+ λAs ,

where λ ≥ 0 is a scalar hyperparameter determining the importance of the
cluster information.

24/26

Experiments: Cora Graph without Node Features
A weakness of existing models addressing this problem:
Their performance heavily decreases if no node features are available.

Models Joint Link Prediction and Community Detection

(Dimension d = 16) on graph with 15% of edges being masked

AMI (in %) ARI (in %) AUC (in %) AP (in %)

Modularity-Aware GAE/VGAE Models

Linear Modularity-Aware VGAE 42.86 ± 1.65 34.53 ± 1.97 85.96 ± 1.24 87.21 ± 1.39

Linear Modularity-Aware GAE 43.48 ± 1.12 35.51 ± 1.20 87.18 ± 1.05 88.53 ± 1.33

GCN-based Modularity-Aware VGAE 41.03 ± 1.55 33.43 ± 2.17 84.87 ± 1.14 85.16 ± 1.23

GCN-based Modularity-Aware GAE 41.13 ± 1.35 35.01 ± 1.58 86.90 ± 1.16 87.55 ± 1.26

Standard GAE/VGAE Models

Linear VGAE 32.22 ± 1.76 21.82 ± 1.80 85.69 ± 1.17 89.12 ± 0.82

Linear GAE 28.41 ± 1.68 19.45 ± 1.75 84.46 ± 1.64 88.42 ± 1.07

GCN-based VGAE 28.62 ± 2.76 19.70 ± 3.71 85.47 ± 1.18 88.90 ± 1.11

GCN-based GAE 31.30 ± 2.07 19.89 ± 3.07 85.31 ± 1.35 88.67 ± 1.24

Other Baselines

Louvain 39.09 ± 0.73 20.19 ± 1.73 – –

VGAECD 33.54 ± 1.46 24.32 ± 2.25 83.12 ± 1.11 84.68 ± 0.98

VGAECD-OPT 34.41 ± 1.62 24.66 ± 1.98 82.89 ± 1.20 83.70 ± 1.16

ARGVA 28.96 ± 2.64 19.74 ± 3.02 85.85 ± 0.87 88.94 ± 0.72

ARGA 31.61 ± 2.05 20.18 ± 2.92 85.95 ± 0.85 89.07 ± 0.70

DVGAE 30.46 ± 4.12 21.06 ± 5.06 85.58 ± 1.31 88.77 ± 1.29

DeepWalk 30.26 ± 2.32 20.24 ± 3.91 80.67 ± 1.50 80.48 ± 1.28

node2vec 36.25 ± 1.38 29.43 ± 2.21 82.43 ± 1.23 81.60 ± 0.91

In the absence of node features, our model outperforms a large number of
baselines achieving good performance in both tasks.

25/26

Experiments: Real-World Datasets with Node Features

Datasets Models Joint Link Prediction and Community Detection

(Dimension d = 16) on graph with 15% of edges being masked

AMI (in %) ARI (in %) AUC (in %) AP (in %)

Linear Modularity-Aware VGAE 49.70 ± 2.04 43.64 ± 3.51 93.10 ± 0.88 94.06 ± 0.75

Linear Standard VGAE 46.90 ± 1.43 38.24 ± 3.56 93.04 ± 0.80 94.04 ± 0.75

Cora Louvain 39.09 ± 0.73 20.19 ± 1.73 – –

Best other baseline:

VGAECD-OPT 47.83 ± 1.64 39.45 ± 3.53 92.25 ± 1.07 92.60 ± 0.91

Linear Modularity-Aware VGAE 22.21 ± 1.24 12.59 ± 1.25 86.54 ± 1.20 88.07 ± 1.22

Linear Standard VGAE 17.38 ± 1.43 6.10 ± 1.51 89.08 ± 1.19 91.19 ± 0.98

Citeseer Louvain 22.71 ± 0.47 7.70 ± 0.67 – –

Best other baseline:

DVGAE 16.02 ± 3.32 10.03 ± 4.48 86.85 ± 1.48 88.43 ± 1.23

GCN-Based Modularity-Aware VGAE 19.10 ± 0.21 12.00 ± 0.17 85.40 ± 0.14 86.38 ± 0.15

GCN-Based Standard VGAE 13.98 ± 0.35 8.81 ± 0.32 85.37 ± 0.12 86.41 ± 0.11

Deezer-Album Louvain 17.68 ± 0.20 11.02 ± 0.13 – –

Best other baseline:

node2vec 18.34 ± 0.29 11.27 ± 0.28 83.51 ± 0.17 84.12 ± 0.15

The good performance of our model extends to industrial scale datasets such
as a private Deezer graph containing 2.5 million music albums and 25 million
edges.

26/26

Conclusions

• Learning optimal graph representation – via a Parametrised GSO – in
GNNs improves their performance on real world datasets.

• Node feature information only informs GNN inference if an informative
graph structure is present. Adding node feature kernels to the GSO allows
GNNs to consider their two input sources in a more balanced manner.

• Adding global cluster information to the GSO in GNNs improves the
performance of Graph Autoencoders in industrial application.

We are currently looking for Postdocs!

Please get in touch if you are interested in working on
Natural Language Processing or Graph Representation Learning !

Thank you for your attention!

@JLutzeyer

References
M. Bronstein, “Graph ML at Twitter,” Twitter Engineering Blog Post,

https://blog.twitter.com/engineering/en_us/topics/insights/2020/graph-ml-at-twitter, 2020.

S. Butler & F. Chung, “Spectral graph theory,” In: L. Hogben (ed) Handbook of linear algebra (2nd edition), Boca
Raton, FL: CRC Press, pp. 47/1—47/14, 2017.

D. Cvetkovic, R. Rowlinson & S. Simic, Eigenspaces of graphs, Cambridge, UK: Cambridge University Press, 1997.

L. Dall’Amico, R. Couillet & N. Tremblay, “Optimal Laplacian regularization for sparse spectral community
detection,” ICASSP, 2020.

G. Dasoulas, J. F. Lutzeyer & M. Vazirgiannis, “Learning Parametrised Graph Shift Operators,” In: International
Conference on Learning Representations (ICLR), 2021.

J. A. Deri & J. M. F. Moura, “Spectral projector-based graph Fourier transforms,” IEEE Journal of Selected Topics
in Signal Processing, vol. 11, pp. 785–795, 2017.

V.P. Dwivedi, C.K. Joshi, T. Laurent, Y. Bengio, X. Bresson, “Benchmarking Graph Neural Networks,”
arXiv:2003.00982, 2020.

J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals & G. E. Dahl, “Neural message passing for Quantum
chemistry,” Proceedings of the 34th International Conference on Machine Learning (ICML), 2017.

https://twitter.com/jlutzeyer
https://blog.twitter.com/engineering/en_us/topics/insights/2020/graph-ml-at-twitter

S. Günnemann, “Graph Neural Networks: Adversarial Robustness,” Graph Neural Networks: Foundations,
Frontiers, and Applications, pp. 149–176, 2022.

W. L. Hamilton, R. Ying & J. Leskovec, “Inductive Representatino Learning on Large Graphs,” Proceedings of the
31st International Conference on Neural Information Processing Systems (NIPS), pp. 1025 – 1035, 2017.

Thomas N. Kipf & M. Welling, “Variational Graph Auto-Encoders” NeurIPS Workshop on Bayesian Deep Learning,
2016.

Thomas N. Kipf & M. Welling, “Semi-supervised classification with graph convolutional networks” International
Conference on Learning Representations (ICLR), 2017.

O. Lange & L. Perez, “Traffic prediction with advanced Graph Neural Networks,” DeepMind Research Blog Post,
https://deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks,
2020.

J. Lutzeyer, Network Representation Matrices and their Eigenproperties: A Comparative Study, PhD thesis:
Imperial College London, 2020.

C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J.E Lenssen, G. Rattan & M. Grohe, “Weisfeiler and Lehman Go
Neural: Higher-order Graph Neural Networks,” Proceedings of the AAAI Conference on Artificial Intelligence,
pp. 4602–4609, 2019.

A. Ortega, P. Frossard, J. Kovacevic, J. M. F. Moura & P. Vandergheynst, “Graph signal processing: Overview,
challenges, and applications,” Proceedings of the IEEE, vol. 106, pp. 808–828, 2018.

T. Qin & K. Rohe, “Regularized Spectral Clustering under the Degree-Corrected Stochastic Blockmodel,”
Advances in neural information processing systems (NIPS), pp. 3120–3128, 2013.

G. Salha-Galvan, J. F. Lutzeyer, G. Dasoulas, R. Hennequin & M. Vazirgiannis, “Modularity-Aware Graph
Autoencoders for Joint Community Detection and Link Prediction,” arxiv:2202.00961, 2022.

A. Sandryhaila & J. M. F. Moura “Discrete signal processing on graphs,” IEEE Transactions on Signal Processing,
vol. 61, pp. 1644–1656, 2013.

M. E. A. Seddik, C. Wu, J. F. Lutzeyer & M. Vazirgiannis, “Node Feature Kernels Increase Graph Convolutional
Network Robustness,” International Conference on Artificial Intelligence and Statistics (AISTATS), 2022.

J. M. Stokes, K. Yang, K. Swanson, W. Jin, A. Cubillos-Ruiz, N. M. Donghia, C. R. MacNair, S. French, L. A.
Carfrae, Z. Bloom-Ackermann, V. M. Tran, A. Chiappino-Pepe, A. H. Badran, I. W. Andrews, E. J. Chory, G.
M. Church, E. D. Brown, T. S. Jaakkola, R. Barzilay & J. J. Collins, “A Deep Learning Approach to Antibiotic
Discovery,” Cell, pp. 688–702, 2020.

https://deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks

L. Sun, Y. Dou, C. Yang, J. Wang, P. S. Yu & B. Li, “Adversarial attack and defense on graph data: A survey,”
arXiv:1812.10528, 2020.

P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò & Y. Bengio, “Graph Attention Networks,” 6th
International Conference on Learning Representations (ICLR), 2018.

K. Xu, W. Hu, J. Leskovec & S. Jegelka.“How powerful are graph neural networks?”, International Conference on
Learning Representations (ICLR), 2019.

Y. Zhou, H. Zheng & X. Huang, “Graph Neural Networks: Taxonomy, Advances and Trends,” arXiv:2012.08752,
2020.

	Introduction
	Parametrised Graph Shift Operators
	GNN Robustness
	Modularity-Aware Graph Autoencoders
	Conclusion

