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Motivation: molecule generation for drug discovery

Predict new molecular graphs
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Predict molecular conformers (=3d location of each atom) = set generation
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Settings

A generative model for sets or graphs can take as input:

- a latent vector - a latent set - a latent graph

The latent vector is needed to condition on molecule-level properties
(e.g., solubility)

Outline:

1. Problem modelling 2. An equivariance perspective 3. Proposition: Top-n creation

LTS4 - EPFL



One-shot generation

* Existing methods follow one of these two graphical models

set creamon cqumn 1ant

up( late ,
matrix-to-set
m Wwrix matrix multi-set
(n.¢) (n,d)

veetor
(length I)

g r h - matrix-to-sct
()

 For graphs, edge weights A and A are predicted as well
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Existing methods for equivariant update

To map a set / graph to another set / graph, any equivariant function can
be used. The choice depends on the tensor order of the input and output.

vector: d — order O

2 — 0: graph neural network, global poolin
set: n x d = order 1 ° | |

2 — 1: graph neural network, extract node features
edge feat: nxnxd— order 2 Irap

1 — 0: Deep sets

2 — 2: graph neural network, extract messages
Tensor order grap J

Input Output 1 — 2: Set2Graph

vector 0 0 1 = 1: Point Nets or Transformers (1 = 2 = 1)

set 1 1 i = | : Maron et al. 2019 + Keriven and Peyré 2020

graph 2 2
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The challenges of creation:

How to create a set or graph from a vector?

set creamon equiv an ant

up( late m1tr1\ to- set® e \We can focus on set creation Only

Ill ltl m lnl multi-set

|l gtl u

matrix-to-set
%( )

 Requirements:

Interaction order .
* Be able to generate varying

Input Output !
vector 0 ” 0 numbers of points
\ e Some notion of equivariance
set 1 1
graph 2 2
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What is the right notion of equivariance?

* For discriminative tasks:
permutation invariance or equivariance f(7.X) = 7.f(X)

* For generative tasks:
o f(m.z) = f(2) =7.f(2) = allrows are equal

 Exchangeability: Vo, P(f(2z)) = P(x.f(2))
all permutations of the generated sets are equally likely
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Existing methods for set creation

MLP based creation

.Z MLP> reshape! mask

/

latent vector in R?

4 pomts in R? 3 points in R®
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Existing methods for set creation

MLP

Z MLP :reshape! mask
H—F
E Nmax X C n xc
MLP
Deterministic v

Extrapolation ability X
No arbitrary masking X

Performance ~
Exchangeability X
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Existing methods for set creation

MLP Independent sampling
L] XO
Z -
7 MLP [qreshape mask Sample
B B I
|| NMmax X C N Xc M) 1i.d le."jcat
MLP Random i.i.d.
Deterministic v X
Extrapolation ability X 4
No arbitrary masking X v
Performance ~ X
Exchangeability X v
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Existing methods for set creation

MLP Independent sampling
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Existing methods for set creation

MLP Independent sampling First-n
[ ] 0 0
2 m X X
MLP Hreshape mask sample l
H —_— > —> E— .—;—-}
— I'OV\&S
n 0 I i
B Nmax X C n X c . '. cat
MLP Random.i.i.d. First-n ™ ™ e o
Deterministic v X f o Wm ¥ o ” " ””r “
Extrapolation ability =~ X |_ _
No arbitrary maSking x () Poin;Ml.P () PointNe:ST ) Sclf-A;memicn

GG-GAN, Krawczuk et al. 21
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Existing methods for set creation

MLP
E

MLP

reshape ! mask

Nmax X C

MLP Random.i.i.d.

n Xc

Independent sampling First-n

Sample

TOWS
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4
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No arbitrary masking X

Performance
Exchangeability
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Conclusion of the problem modelling

* No existing method is very satisfying

 The common definition of equivariance is not suited to generative
models

* Exchangeability does not seem to correlate with performance

Outline

1. Problem modelling 2. An equivariance perspective 3. Proposition: Top-n creation
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A novel perspective on permutation equivariance

Observation 1

In discriminative tasks, equivariant functions are used with invariant
loss functions

\\

\ example: N-body problem — rotation equivariance

L2 loss is suited, not L1

Observation 2

Equivariant model + invariant loss = the training dynamics do not
depend on the group elements used to represent train data
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(F, 1)-equivariance

Fg :hypothesis class parametrized by 6 € ©
| :loss function
G :symmetry group of the problem

Definition
(Fe,1) is equivariant to the action of G if the dynamics of 6 € ©

trained with gradient descent on [ do not depend on the group
elements used to represent the training data

In practice: write one SGD step, check that the parameter updates do
not depend on the group elements

LTS4 - EPFL
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Sufficient conditions for (F, I)-equivariance

Discriminative tasks
Equivariant model + invariant loss function = equivariance

Generative tasks

GANSs: invariant discriminator + standard GAN loss
= equivariance

VAES: invariant encoder +

the loss satisfies . .
Vg e G,1(g.X,X)=1(X,X)

= equivariance. \

satisfied by common loss functions for sets

(F, 1)-equivariance captures common practice in both settings

LTS4 - EPFL
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Why exchangeability is not needed in GANs and VAEs

o Vrr, P(f(z)) =P(m.f(2)) does not appear in the sufficient
conditions for equivariance

* |Intuition: all permutations of X result in the same set

g , h -\ma.t. rix-to-set

* Explains the good performance of MLP and First-n generation

LTS4 - EPFL
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Back to set creation

MLP random.i.i.d. First-n

Deterministic v X 4
Extrapolation ability X 4 X
No arbitrary masking X v X
Performance ~ X v
Exchangeability % \a X

Outline

1. Problem modelling 2. An equivariance perspective 3. Proposition: Top-n creation
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Top-n creation

|ldea: select the n points that align best with the latent vector

Trainable reterence set

= a = MLP(z)
representation I I W E I
O c=®a/ vec(([|¢:l2)1<i<n,)
latent | —“m
vector angle I . 0 I s = argsort (e)[: n)
0 e 9 7 X0
= - — > 02080503-0" = Rs
El *n cosines

1. Cosine computation 2. Top n selection

Issue: Top-n selection is not differentiable
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Top-n creation

|ldea: select the n points that align best with the latent vector

Trainable reference set

= a = MLP(z)
representation I I Ll I I |

latent n l c=®a/ vec((||¢:]2)1<i<n,)
vector angle angle I I 0 s = argsort (e)[: n)

c MLP. u | I H I ¢ = softmax(c|s])

—» 0208050.3-0 —> 0.8x@ 0.5x | 0.3x

D cosines X = R[s] @eW, +¢c W,

1. Cosine computation 2. Top n.selection 3. Multiplicative modulation X'=Xx" ©1, z! Ws+1, z! W4
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Top-n creation

|ldea: select the n points that align best with the latent vector

Trainable reference set

g a = MLP(2)
representation I I min I |
| ml= l c=®a/ vee((||¢:l2)1<i<n,)
latent —
ecor . erge BEHERE s = argsort (c)[: 7]
MLP. H | I D E ¢ = softmax(c[s])
——>3 02080503-0.« —> 0.8xj 0.5x | 0.3x
e cosines X" =R[s]ceW, + & W,
1. Cosine computation 2. Top n.selection 3. Multiplicative modulation X'=Xx" ©1, z! W;+ 1, z! W,

 Modulation provides a path in the computational graph for gradients to flow
8X 0 # 0

* How to choose the number of reference points?
Tradeoff: more points = slower training, often better generalization
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Analysis

MLP randomi.i.d. First-n | Top-n
Deterministic v X v v
Extrapolation ability X 4 X ~
No arbitrary masking X v X v
Performance ~ X v v

e Does the reference set restrict expressivity?

up to nrer points

No: any set can be approximated by First-n or Top-n + a 2-layer

pointwise MLP

LTS4 - EPFL
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Experiments

e SetMNIST reconstruction:

Method Set creation Chamfer (e-3) Method Set creation Chamfer (e-3)
TSPN Random i.i.d. 16.42-0.53 DSPN Random 1.1.d. 28.564+1.23
First-n 15.45+1.41 First-n 26.61+0.54
Top-n 14.98=0.59 Top-n 22.59+1.71
* QObiject detection on CLEVR:
Bounding box prediction
Model Generator AP 50 AP 60 AP 70 AP 80 AP 90
DSPN MLP 03.7+1.8 82.8+32 959.6+48 26.2+45 1.840.8
Randomi.id. 97.3+20 93.2+37 80.6+54 51.8455 11.6+2.3
First-n 88.2+5.1 T77.1+73 57.3+8.2 29.0+6.1 4.0+1.3
Top-n 97.3+1.3 93.0+2s8 80.8+t50 53.0x70 12.5+3.9
Full state prediction
Model Generator AP APy APso AP100 APins
DSPN MLP 2.7+1.4 179486 42.1+16.8 54.5+19.4 T1.243.0
Randomiid. 2.6+1.3 26.0+9.1 60.5+11.1 76.6+5.2 80.4+4.3
First-n 0.7+0.4 11.7+4.3  50.3+9.1 81.2453 84.8+5.0
Top-n 8.3+1.9 48.2464 86.4+38 93.0+26 94.1+23
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Experiments (2)

* Synthetic molecule-like dataset in 3d

Method

Train Test Generation Extrapolation
Wasserstein  Wasserstein | Valency Diversity | Valency Incorrect  Diversity
distance distance loss score loss  valency (%) score
MLP 0.52+.09 0.89:+03 | 0.21+.04 5.46x2 | 6.13x.2 2243 5.02+2
Random i.i.d. 1.331.02 1.491 .00 | 0.281.03 4.771.2 | 2.441 1 1615 4.671 .2
First-n 0.47+.06 0.86+.02 | 0.21+.08 0.28+.2 | 4.46+.5 1542 0.05+.2
Top-n 0.29+.10 0.92x05 | 0.15+.02 5.86x2  1.66x.2 812  D5.656x3
 Molecule generation on QM9
Method Gienerator Valid (%) Unique and valid
Graph VAE MLP 55.7 42.3
Graph VAE + RL MLP 04.5 32.4
MolGAN MLP 98.0 2.3
GTVAE MLP 71.6 16.8
Set2GraphVAE (ours) MLP 60.54¢ 2.2 55.442.3
Randomi.id. 34.9+15.2 29.9+10.0
First-n 99.9+ 2.7 56.212.7
Top-n 59.9+ 14 56.2+11

LTS4 - EPFL
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Conclusion

* (F, lI)-equivariance captures in a single notion common practice both
for discriminative and generative tasks

e Exchangeability does not seem to be useful for equivariance in
GANs and VAEs

e Top-n creation is a simple and effective tool to generate sets from a
latent vector

LTS4 - EPFL
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Relationship with Blondel et al. 2020

 TJop-n is based on a hard selection process s = argsort(c): n

e Soft alternatives should be possible

— each selected point would be a linear combination of
references points

* QOutput of soft rank: an approximation of the rank of each point

Reference point: X1 X2 X3
Soft rank: 1.2 2.7 2.1

Soft-rank alternatives to Top-n should be possible, but would not be a straightforward application
of Blondel et al. 2020

Blondel et al., Fast differentiable sorting and ranking, ICML 2020
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Why does i.i.d. generation perform poorly?

LTS4 -

Intuition: two sources of randomness = reconstruction is more difficult

VAEs maximize the evidence lower bound (ELBO)

L(X)=Eqg,(z1x)[logps( X, 2) — log q4(2]| X)] < pe(X)

The decoder is stochastic = logps(X, 2) cannot be computed in close
form

Jensen: L(X) > Exo, [logpg(X,2z|X") —logqy(z|X)]
“Random i.i.d. generation maximises the ELBO of the ELBO”

EPFL 32



Common loss functions for sets

e (Chamfer’s distance

f == ] i — ’_ 2 Z - - !- ?
down = 3 minles 1+ 3 minlle: -l

e \Wasserstein distance

dyy, = inf Z u(x;, %) ||z; — xt]|2
ue{l'(X,X")} 1<i<n v ‘ !
1<j<n’
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