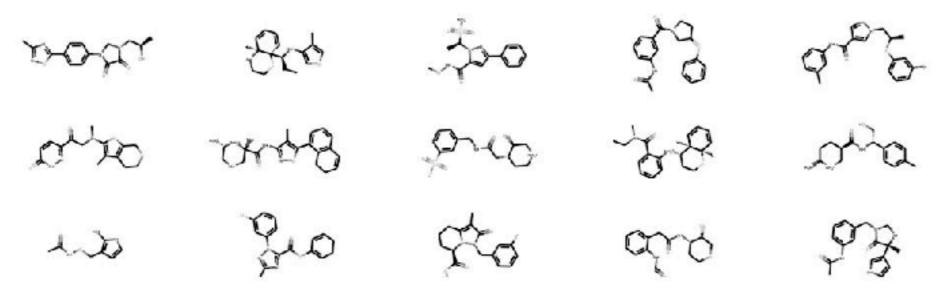
From vectors to graphs: architectures for set and graph generation

Based on *Top-N: Equivariant set and graph generation without exchangeability* C.V., Pascal Frossard (ICLR 2022)

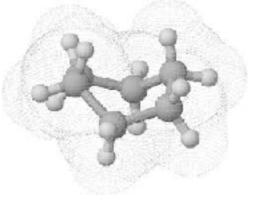
Clément Vignac March 8, 2022 Signal Processing Laboratory (LTS4)

Motivation: molecule generation for drug discovery

Predict new molecular graphs



Predict molecular conformers (=3d location of each atom) → set generation



How to build models for one-shot set and graph generation?

Settings

A generative model for sets or graphs can take as input:

- a latent vector
 - a latent set
 - a latent graph
 - a latent graph

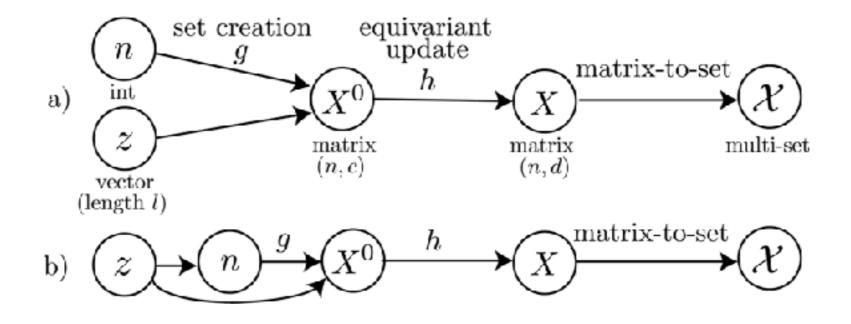
The latent vector is needed to condition on molecule-level properties (e.g., solubility)

Outline:

1. Problem modelling 2. An equivariance perspective 3. Proposition: Top-n creation

One-shot generation

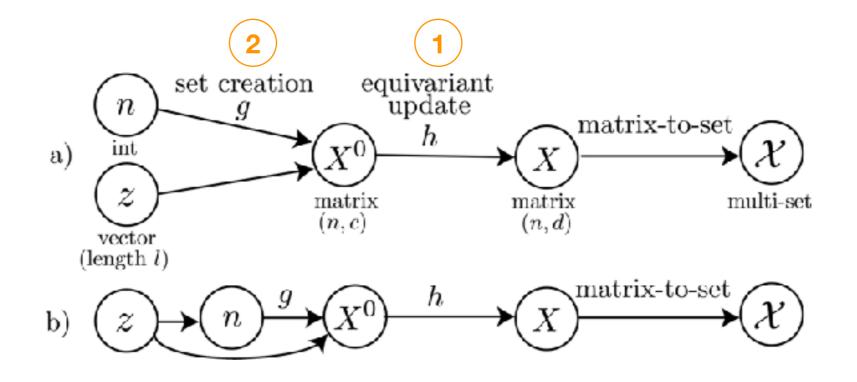
• Existing methods follow one of these two graphical models



• For graphs, edge weights A^0 and A are predicted as well

One-shot generation

• Existing methods follow one of these two graphical models



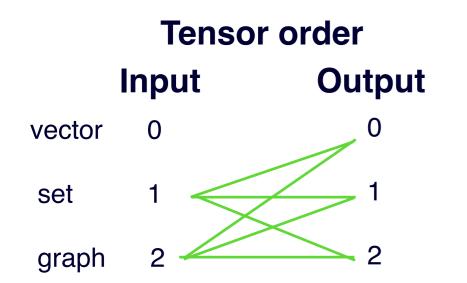
• For graphs, edge weights A^0 and A are predicted as well

Existing methods for equivariant update

To map a set / graph to another set / graph, any equivariant function can be used. The choice depends on the tensor order of the input and output.

vector: $d \rightarrow \text{order } 0$ set: $n \times d \rightarrow \text{order } 1$

edge feat: $n x n x d \rightarrow \text{order } 2$



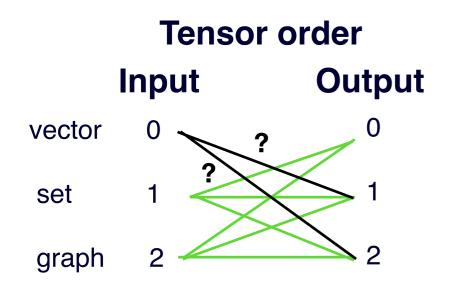
$2 \rightarrow 0$: graph neural network, global pooling
$2 \rightarrow 1$: graph neural network, extract node features
$1 \rightarrow 0$: Deep sets
2 \rightarrow 2: graph neural network, extract messages
1 → 2: Set2Graph
1 \rightarrow 1: Point Nets or Transformers (1 \rightarrow 2 \rightarrow 1)
i → j : Maron et al. 2019 + Keriven and Peyré 2020

Existing methods for equivariant update

To map a set / graph to another set / graph, any equivariant function can be used. The choice depends on the tensor order of the input and output.

vector: $d \rightarrow \text{order } 0$ set: $n \times d \rightarrow \text{order } 1$

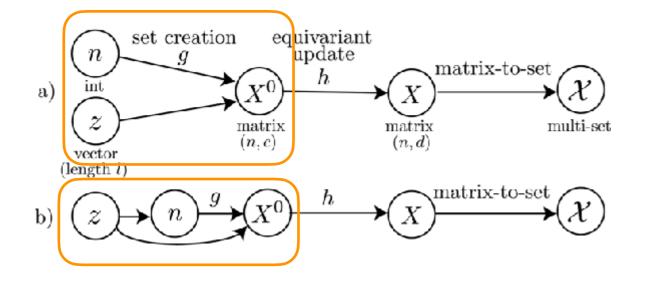
edge feat: $n \times n \times d \rightarrow \text{order } 2$



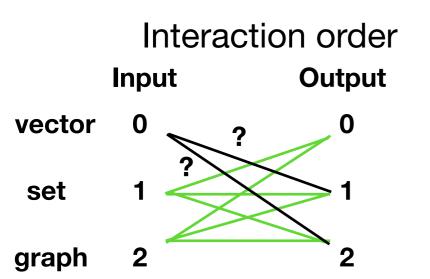
2 \rightarrow 0: graph neural network, global pooling
2 \rightarrow 1: graph neural network, extract node features
$1 \rightarrow 0$: Deep sets
2 \rightarrow 2: graph neural network, extract messages
1 → 2: Set2Graph
$1 \rightarrow 1$: Point Nets or Transformers $(1 \rightarrow 2 \rightarrow 1)$
i → j : Maron et al. 2019 + Keriven and Peyré 2020

The challenges of creation:

How to create a set or graph from a vector?



• We can focus on set creation only



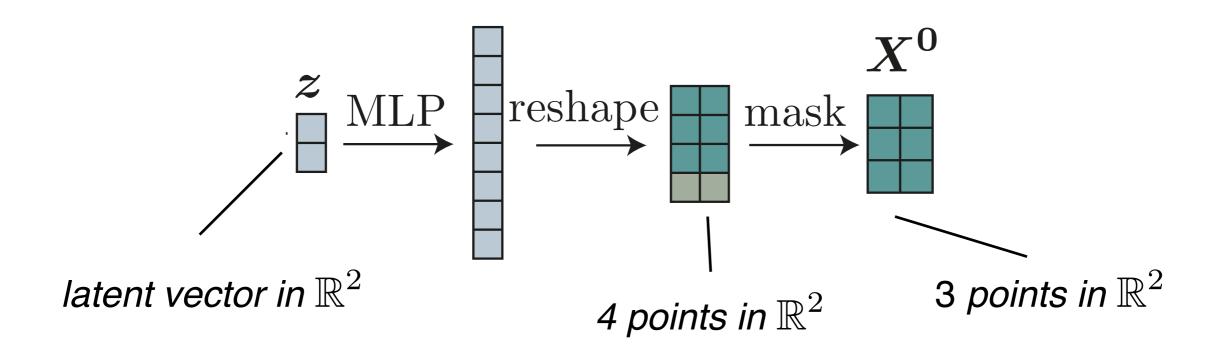
- Requirements:
 - Be able to generate varying numbers of points
 - Some notion of equivariance

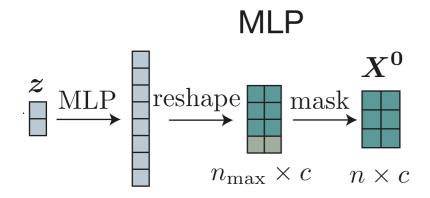
What is the right notion of equivariance?

- For discriminative tasks: permutation invariance or equivariance $f(\pi \cdot X) = \pi \cdot f(X)$
- For generative tasks:
 - $f(\pi. \mathbf{z}) = f(\mathbf{z}) = \pi. f(\mathbf{z}) \implies$ all rows are equal
 - Exchangeability: $\forall \pi$, $\mathbb{P}(f(z)) = \mathbb{P}(\pi.f(z))$ all permutations of the generated sets are equally likely

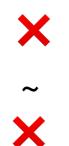
Is it the right notion?

MLP based creation

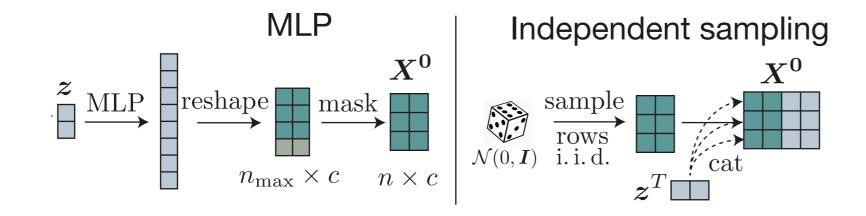




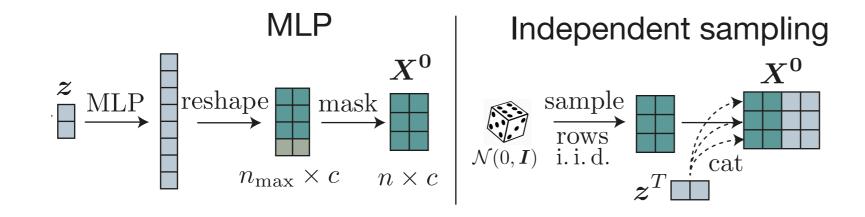
- Deterministic
- Extrapolation ability
- No arbitrary masking 🗙
- Performance
- Exchangeability

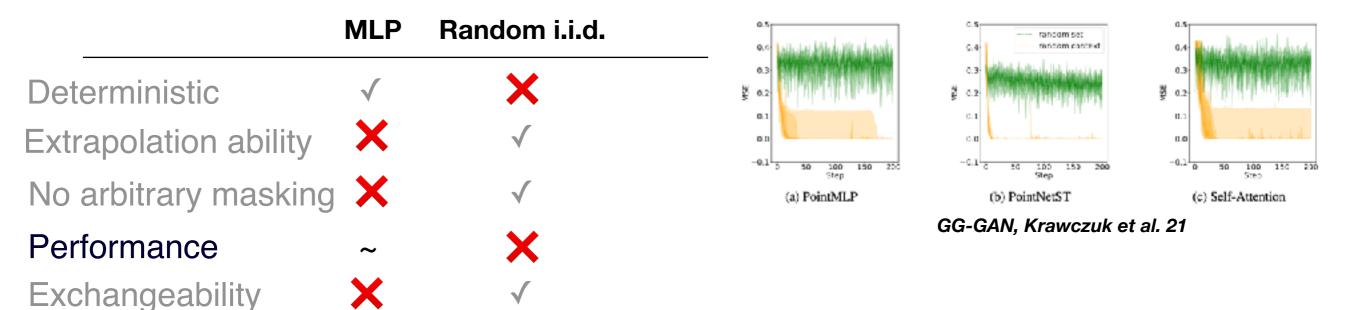


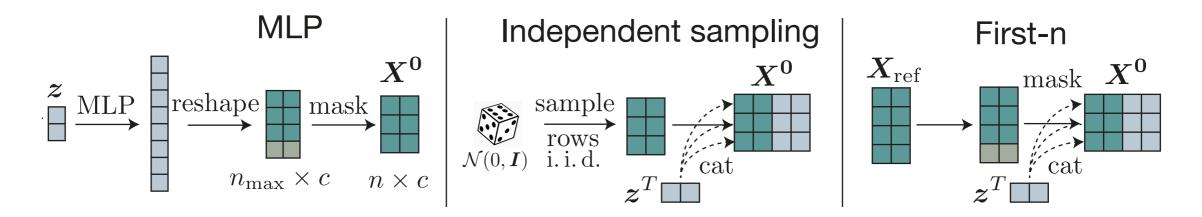
X

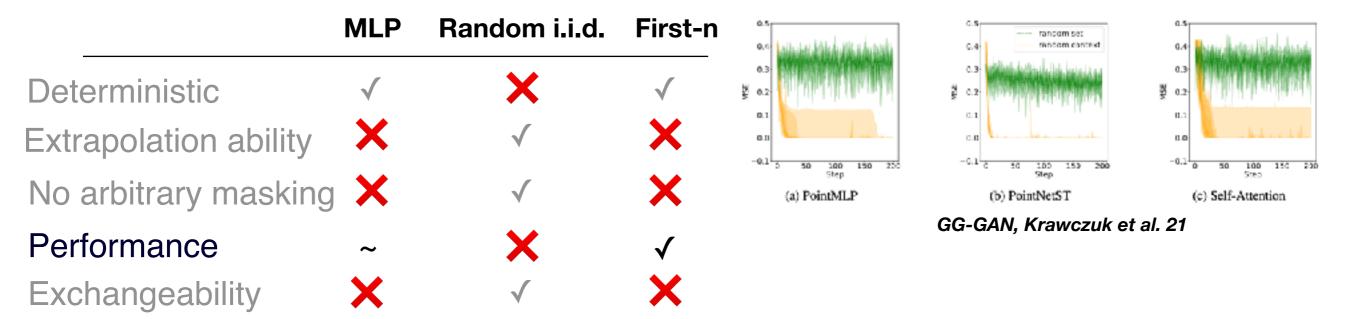


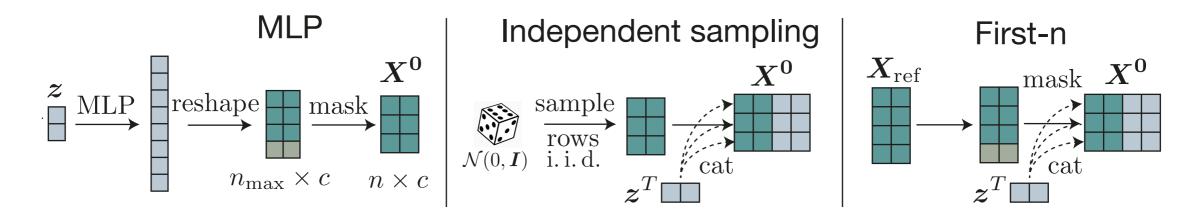
	MLP	Random i.i.d.
Deterministic	\checkmark	×
Extrapolation ability	×	\checkmark
No arbitrary masking	×	\checkmark
Performance	~	×
Exchangeability	×	\checkmark

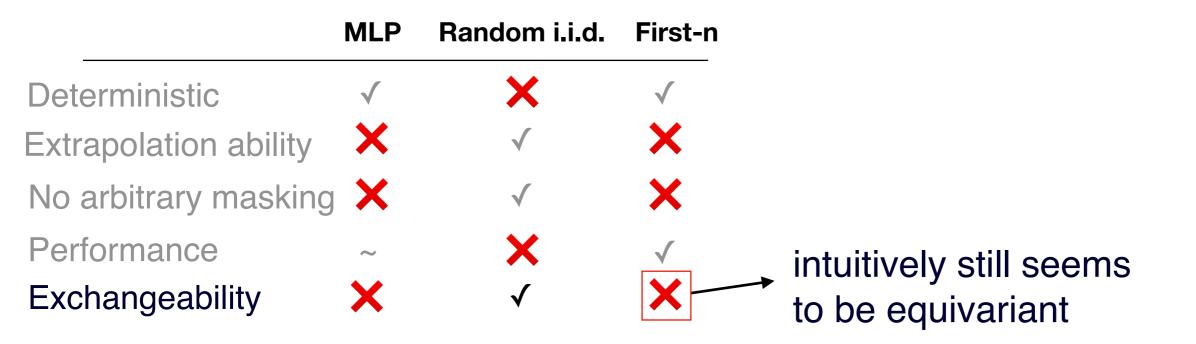












Conclusion of the problem modelling

- No existing method is very satisfying •
- The common definition of equivariance is not suited to generative ${\bullet}$ models
- Exchangeability does not seem to correlate with performance

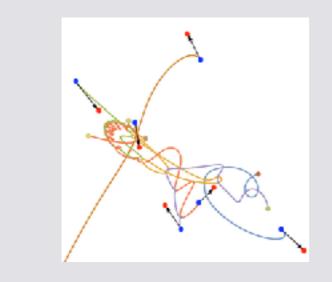
Outline

1. Problem modelling **2. An equivariance perspective** 3. Proposition: Top-n creation

A novel perspective on permutation equivariance

Observation 1

In discriminative tasks, equivariant functions are used with invariant loss functions



example: N-body problem → rotation equivariance

L2 loss is suited, not L1

Observation 2

Equivariant model + invariant loss \implies the training dynamics do not depend on the group elements used to represent train data

Use this observation as a definition of equivariance

(F, I)-equivariance

- $F_{\Theta}\,$: hypothesis class parametrized by $\,\theta\in\Theta\,$
- *l* : loss function
- \mathbb{G} : symmetry group of the problem

Definition

 (F_{Θ}, l) is equivariant to the action of \mathbb{G} if the dynamics of $\theta \in \Theta$ trained with gradient descent on l do not depend on the group elements used to represent the training data

In practice: write one SGD step, check that the parameter updates do not depend on the group elements

Sufficient conditions for (F, I)-equivariance

Discriminative tasks

Equivariant model + invariant loss function \Rightarrow equivariance

Generative tasks

GANs: invariant discriminator + standard GAN loss \Rightarrow equivariance

No constraint on the generator

 $\begin{array}{l} \text{VAEs: invariant encoder +} \\ \text{the loss satisfies} \\ \Rightarrow \text{equivariance.} \end{array} \quad \forall g \in \mathbb{G}, l(g.\boldsymbol{X}, \hat{\boldsymbol{X}}) = l(\boldsymbol{X}, \hat{\boldsymbol{X}}) \end{array}$

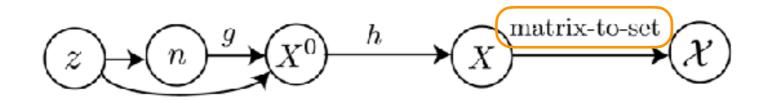
No constraint on the decoder

satisfied by common loss functions for sets

(F, I)-equivariance captures common practice in both settings

Why exchangeability is not needed in GANs and VAEs

- $\forall \pi, \mathbb{P}(f(z)) = \mathbb{P}(\pi.f(z))$ does not appear in the sufficient conditions for equivariance
- Intuition: all permutations of *X* result in the same set



• Explains the good performance of MLP and First-n generation

Back to set creation

	MLP	random i.i.d.	First-n	
Deterministic	\checkmark	×	\checkmark	
Extrapolation ability	×	\checkmark	X	
No arbitrary masking	×	\checkmark	×	Can we r
Performance	~	×	\checkmark	of the firs
Exchangeability	×	\checkmark	×	learnable

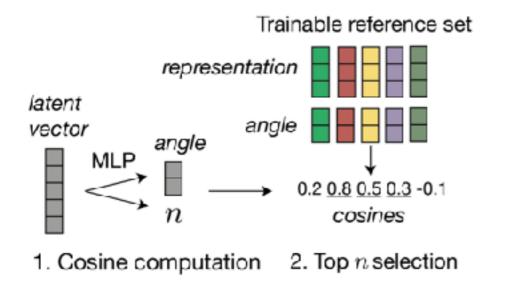
replace the masking st rows by a e mechanism?

Outline

1. Problem modelling 2. An equivariance perspective **3. Proposition: Top-n creation**

Top-n creation

Idea: select the *n* points that align best with the latent vector

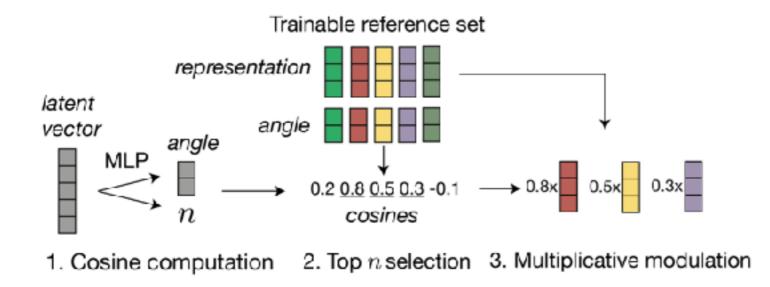


 $egin{aligned} oldsymbol{a} &= \mathrm{MLP}_1(oldsymbol{z}) \ oldsymbol{c} &= oldsymbol{\Phi} oldsymbol{a} \ / \mathrm{vec}((||oldsymbol{\phi}_i||_2)_{1 \leq i \leq n_0}) \ oldsymbol{s} &= \mathrm{argsort}_{\downarrow}(oldsymbol{c})[:n] \ oldsymbol{X}^0 &= oldsymbol{R}[s] \end{aligned}$

Issue: Top-n selection is not differentiable

Top-n creation

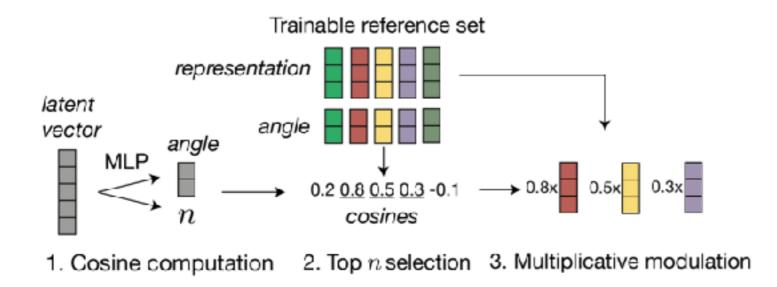
Idea: select the *n* points that align best with the latent vector



 $egin{aligned} oldsymbol{a} &= \mathrm{MLP}_1(oldsymbol{z}) \ oldsymbol{c} &= oldsymbol{\Phi} oldsymbol{a} \ / \mathrm{vec}((||oldsymbol{\phi}_i||_2)_{1 \leq i \leq n_0}) \ oldsymbol{s} &= \mathrm{argsort}_{\downarrow}(oldsymbol{c})[:n] \ oldsymbol{ ilde{c}} &= \mathrm{softmax}(oldsymbol{c}[s]) \ oldsymbol{X}^0 &= oldsymbol{R}[oldsymbol{s}] \odot \,oldsymbol{ ilde{c}} \,oldsymbol{W}_1 + \,oldsymbol{ ilde{c}} \,oldsymbol{W}_2 \ oldsymbol{X}^0 &= oldsymbol{R}[oldsymbol{s}] \odot \,oldsymbol{ ilde{c}} \,oldsymbol{W}_1 + \,oldsymbol{ ilde{c}} \,oldsymbol{W}_2 \ oldsymbol{X}^0 &= oldsymbol{X}^0 \odot oldsymbol{1}_n \,oldsymbol{z}^T \,oldsymbol{W}_3 + oldsymbol{1}_n \,oldsymbol{z}^T \,oldsymbol{W}_4 \end{aligned}$

Top-n creation

Idea: select the *n* points that align best with the latent vector



 $egin{aligned} oldsymbol{a} &= \mathrm{MLP}_1(oldsymbol{z}) \ oldsymbol{c} &= oldsymbol{\Phi} oldsymbol{a} \ / \mathrm{vec}((||oldsymbol{\phi}_i||_2)_{1 \leq i \leq n_0}) \ oldsymbol{s} &= \mathrm{argsort}_{\downarrow}(oldsymbol{c})[:n] \ oldsymbol{ ilde{c}} &= \mathrm{softmax}(oldsymbol{c}[s]) \ oldsymbol{X}^0 &= oldsymbol{R}[oldsymbol{s}] \odot \,oldsymbol{ ilde{c}} \,oldsymbol{W}_1 + oldsymbol{ ilde{c}} \,oldsymbol{W}_2 \ oldsymbol{X}^0 &= oldsymbol{R}[oldsymbol{s}] \odot \,oldsymbol{ ilde{c}} \,oldsymbol{W}_1 + oldsymbol{ ilde{c}} \,oldsymbol{W}_2 \ oldsymbol{X}^0 &= oldsymbol{X}^0 \odot oldsymbol{1}_n \,oldsymbol{z}^T \,oldsymbol{W}_3 + oldsymbol{1}_n \,oldsymbol{z}^T \,oldsymbol{W}_4 \end{aligned}$

Modulation provides a path in the computational graph for gradients to flow

$$rac{\partial \boldsymbol{X}^0}{\partial \boldsymbol{a}}
eq 0$$

 How to choose the number of reference points? Tradeoff: more points = slower training, often better generalization

Analysis

	MLP	random i.i.d.	First-n	Top-n	
Deterministic	\checkmark	×	\checkmark	\checkmark	
Extrapolation ability	×	\checkmark	×	~	up to n _{ref} poin
No arbitrary masking	×	\checkmark	×	\checkmark	
Performance	~	×	\checkmark	\checkmark	

Does the reference set restrict expressivity?
 No: any set can be approximated by First-n or Top-n + a 2-layer pointwise MLP

• SetMNIST reconstruction:

Method	Set creation	Chamfer (e-5)	Method	Set creation	Chamfer (e-5)
TSPN	<i>Random i.i.d.</i> First-n	$\frac{16.42{\scriptstyle\pm0.53}}{15.45{\scriptstyle\pm1.41}}$	DSPN	Random i.i.d. <i>First-n</i>	$\frac{28.56 \pm 1.23}{26.61 \pm 0.54}$
	Top-n	$14.98 {\scriptstyle \pm 0.59}$		Top-n	22.59 ± 1.71

• Object detection on CLEVR:

Bounding box prediction

Model	Generator	AP_{50}	AP_{60}	AP_{70}	<i>AP</i> ₈₀	AP_{90}
DSPN	MLP	$93.7{\scriptstyle\pm1.8}$	$82.8{\scriptstyle\pm3.2}$	$59.6{\scriptstyle\pm4.8}$	$26.2{\pm}4.5$	$1.8{\pm}0.8$
	Random i.i.d.	97.3 ± 2.0	93.2 ± 3.7	80.6 ± 5.4	51.8 ± 5.5	11.6 ± 2.3
	First-n	88.2 ± 5.1	77.1 ± 7.3	57.3 ± 8.2	$29.0{\pm}6.1$	4.0 ± 1.3
	Top-n	97.3 ± 1.3	$\textbf{93.0}{\scriptstyle \pm 2.8}$	80.8 ± 5.0	53.0 ± 7.0	12.5 ± 3.9

Full state prediction

Model	Generator	AP_{10}	AP_{20}	AP_{50}	AP_{100}	$AP_{\rm inf}$
DSPN	MLP Random i.i.d. <i>First-n</i> Top-n	2.7 ± 1.4 2.6 ± 1.3 0.7 ± 0.4 8.3 ± 1.9	$\begin{array}{c} 17.9{\scriptstyle\pm8.6}\\ 26.0{\scriptstyle\pm9.1}\\ 11.7{\scriptstyle\pm4.3}\\ \textbf{48.2}{\scriptstyle\pm6.4}\end{array}$	$\begin{array}{c} 42.1{\scriptstyle\pm16.8}\\ 60.5{\scriptstyle\pm11.1}\\ 50.3{\scriptstyle\pm9.1}\\ \textbf{86.4}{\scriptstyle\pm3.8}\end{array}$	$\begin{array}{c} 54.5{\scriptstyle\pm19.4}\\ 76.6{\scriptstyle\pm5.2}\\ 81.2{\scriptstyle\pm5.3}\\ \textbf{93.0}{\scriptstyle\pm2.6}\end{array}$	$71.2{\pm}3.0\\80.4{\pm}4.3\\84.8{\pm}5.0\\\textbf{94.1}{\pm}2.3$

Experiments (2)

• Synthetic molecule-like dataset in 3d

Method	Train	Test	Gene	ration		Extrapolation	
	Wasserstein distance	Wasserstein distance	Valency loss	Diversity score	Valency loss	Incorrect valency (%)	Diversity score
MLP	$0.52 \pm .09$	$0.89 \pm .03$	$0.21 \pm .04$	5.46 ± 2	$6.13 \pm .2$	22 ± 3	$5.02 \pm .2$
Random i.i.d.	$1.33 {\pm}.02$	$1.49 {\pm}.09$	$0.28 {\pm}.03$	$4.77{\scriptstyle \pm .2}$	$2.44 {\pm}.1$	16 ± 5	$4.67 {\pm} .2$
First-n	$0.47 \pm .06$	$0.86 \pm .02$	$0.21 \pm .08$	$5.28 \pm .2$	$4.46{\pm}.5$	15 ± 2	$5.05 \pm .2$
Top-n	$0.59 \pm .10$	$0.92{\scriptstyle \pm .05}$	$0.15 \pm .02$	$5.86 \scriptstyle \pm .2$	$1.65 \pm .2$	$8_{\pm 2}$	$5.65 \pm .3$

• Molecule generation on QM9

Method	Generator	Valid (%)	Unique and valid
Graph VAE	MLP	55.7	42.3
Graph VAE + RL	MLP	94.5	32.4
MolGAN	MLP	98.0	2.3
GTVAE	MLP	74.6	16.8
Set2GraphVAE (ours)	MLP	$60.5\pm$ 2.2	55.4 ± 2.3
-	Random i.i.d.	$34.9 {\pm} 15.2$	29.9 ± 10.0
	First-n	59.9 ± 2.7	56.2 ± 2.7
	Top-n	$59.9{\scriptstyle\pm}1.4$	56.2 ± 1.1

Conclusion

- (F, I)-equivariance captures in a single notion common practice both for discriminative and generative tasks
- Exchangeability does not seem to be useful for equivariance in GANs and VAEs
- Top-n creation is a simple and effective tool to generate sets from a latent vector

References

- Maron et al., Invariant and equivariant graph networks, ICLR 2019
- Keriven and Peyré, Universal invariant and equivariant graph networks, *Neurips* 2020
- Krawczuk et al., GG-GAN: A geometric graph generative adversarial network, *Under review*
- Gao and Ji, Graph U-Nets, *ICML 2019*

Questions?

Clement Vignac

clement.vignac@epfl.ch Signal Processing Laboratory (LTS4)

Vignac and Frossard, Top-N: Equivariant set and graph generation without exchangeability ICLR 2022

Relationship with Blondel et al. 2020

- Top-n is based on a hard selection process $s = \operatorname{argsort}_{\downarrow}(c)[:n]$
- Soft alternatives should be possible
 → each selected point would be a linear combination of references points
- Output of soft rank: an approximation of the rank of each point

Reference point:	X 1	X 2	X 3
Soft rank:	1.2	2.7	2.1

Soft-rank alternatives to Top-n should be possible, but would not be a straightforward application of Blondel et al. 2020

Blondel et al., Fast differentiable sorting and ranking, *ICML 2020* LTS4 - EPFL

Why does i.i.d. generation perform poorly?

- Intuition: two sources of randomness \Rightarrow reconstruction is more difficult
- VAEs maximize the evidence lower bound (ELBO)

 $\mathcal{L}(oldsymbol{X}) = \mathbb{E}_{q_{\phi}(oldsymbol{z} \mid oldsymbol{X})}[\log p_{ heta}(oldsymbol{X},oldsymbol{z}) - \log q_{\phi}(oldsymbol{z} \mid oldsymbol{X})] \leq p_{ heta}(oldsymbol{X})$

- The decoder is stochastic $\implies \log p_{\theta}({m X}, {m z})$ cannot be computed in close form
- Jensen: $\mathcal{L}(\mathbf{X}) \ge E_{\mathbf{X}^0, \mathbf{z}} \left[\log p_\theta(\mathbf{X}, \mathbf{z} | \mathbf{X}^0) \log q_\phi(\mathbf{z} | \mathbf{X}) \right]$
- "Random i.i.d. generation maximises the ELBO of the ELBO"

Common loss functions for sets

• Chamfer's distance

$$d_{ ext{Cham}} = \sum_{1 \leq i \leq n} \min_{j \leq n'} ||m{x}_i - m{x}'_j||_2^2 + \sum_{1 \leq j \leq n'} \min_{i \leq n} ||m{x}_i - m{x}'_j||_2^2$$

Wasserstein distance

$$d_{\mathcal{W}_2} = \inf_{u \in \{\Gamma(\boldsymbol{X}, \boldsymbol{X}')\}} \sum_{\substack{1 \le i \le n \\ 1 \le j \le n'}} u(\boldsymbol{x}_i, \boldsymbol{x}'_j) \| \boldsymbol{x}_i - \boldsymbol{x}'_j \|_2^2$$