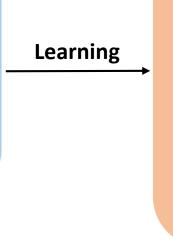
Sketching for Large-Scale Learning of Mixture Models

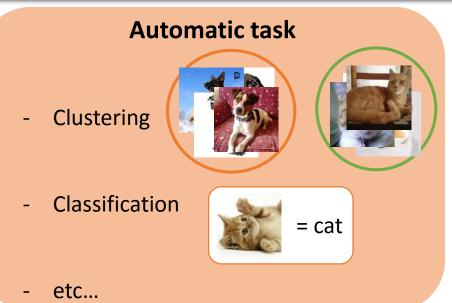
Nicolas Keriven

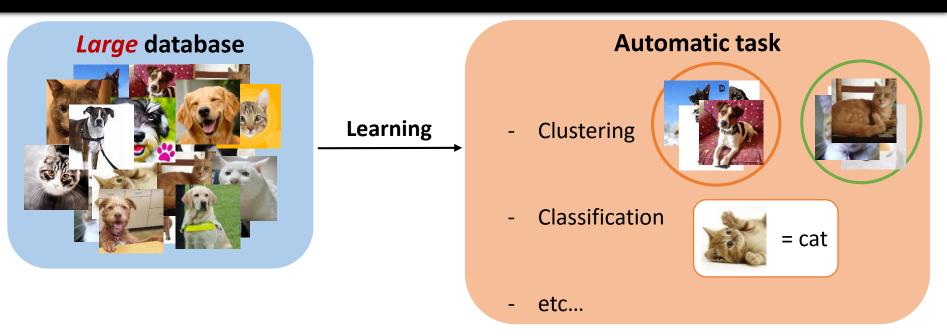
Université Rennes 1 Ecole doctorale MATISSE

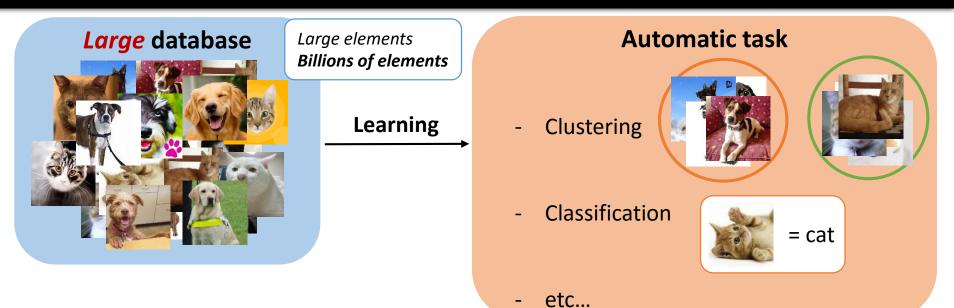
IRISA (CNRS/UMR 6074), Team PANAMA Advisor: Rémi Gribonval

Thesis defense – 2017 October 12th



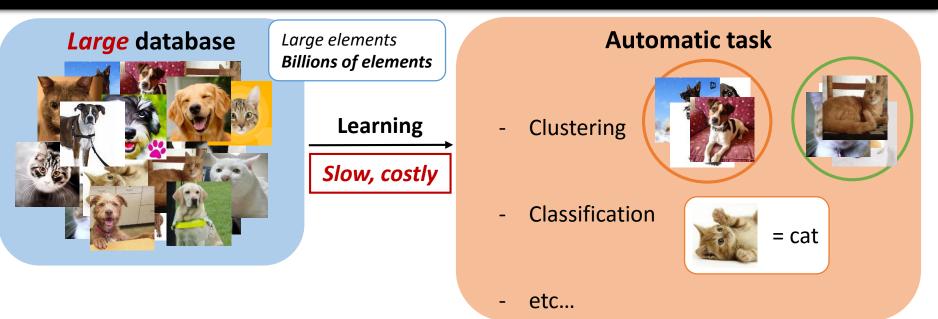




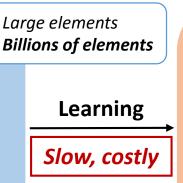


_

12/10/2017



Distributed database

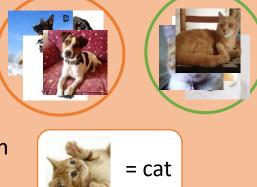


Automatic task

- Clustering

- Classification

- etc...



12/10/2017

Distributed database

Data Stream

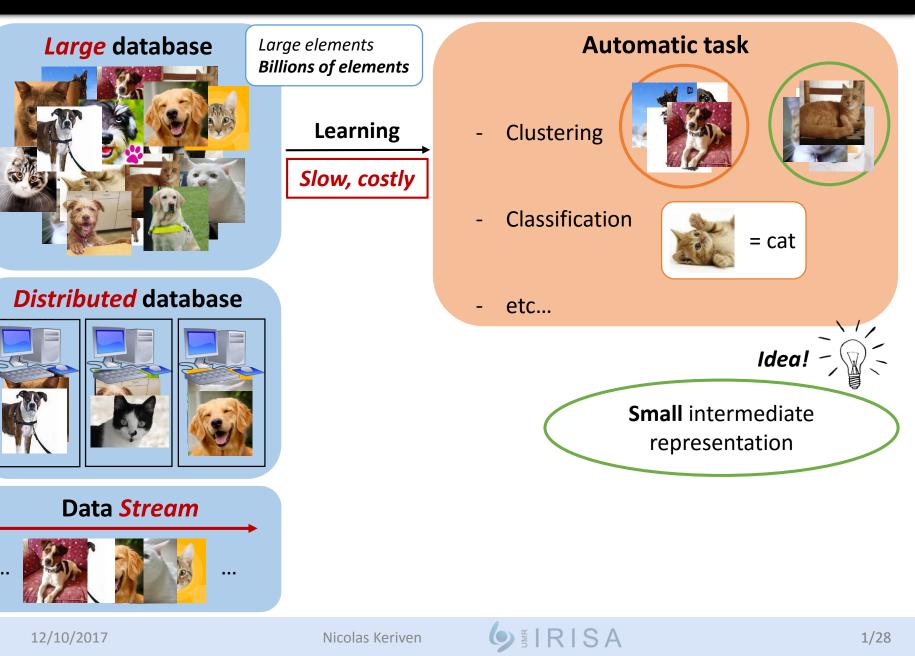
Large elements **Billions of elements** Learning Slow, costly

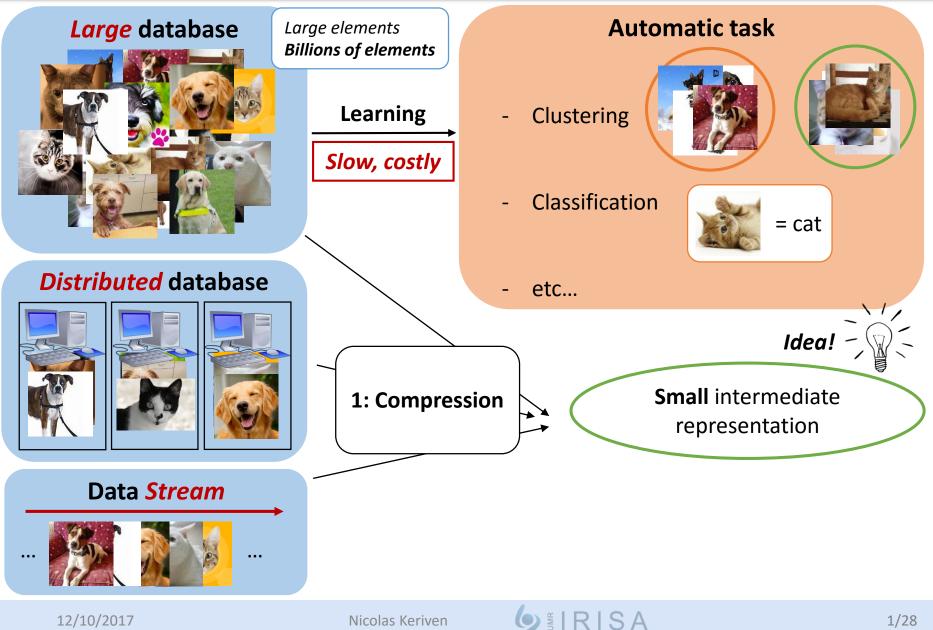
Automatic task

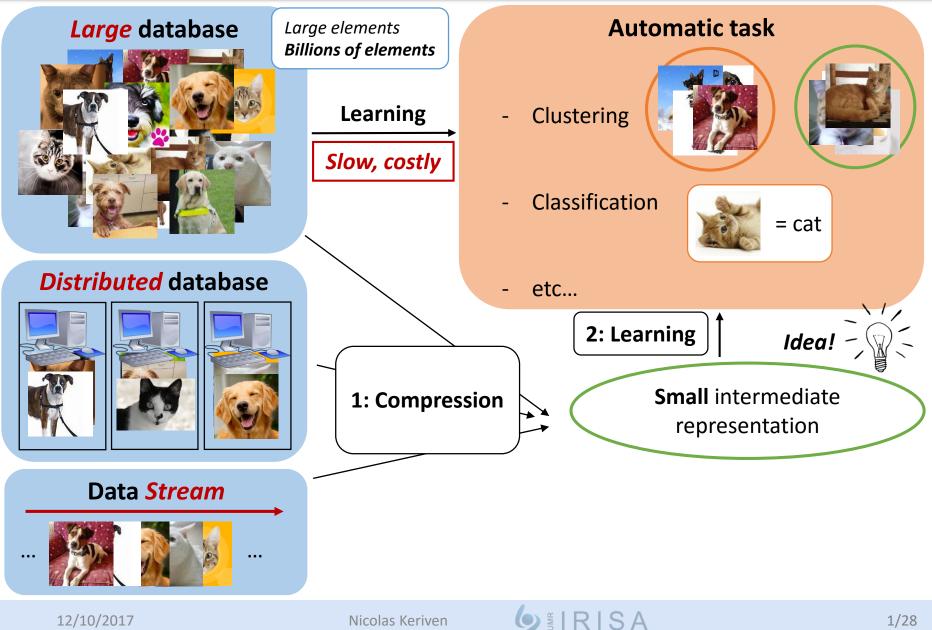
Classification -

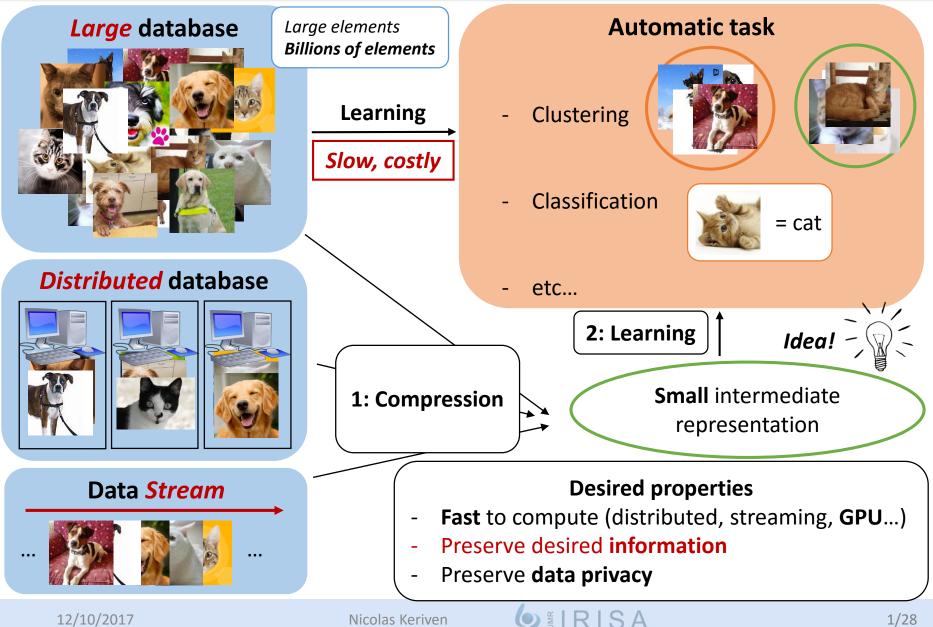
etc... _

12/10/2017

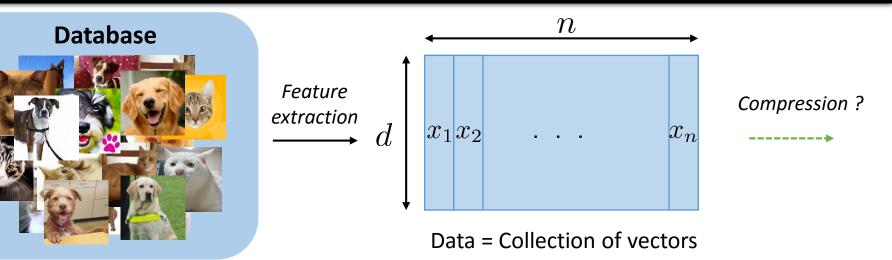




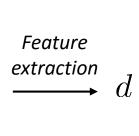


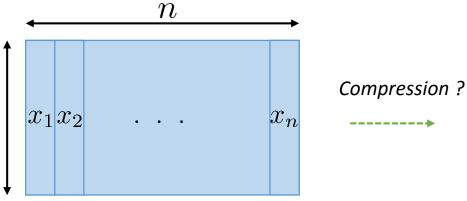


Database

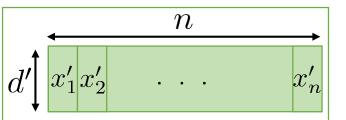


Database





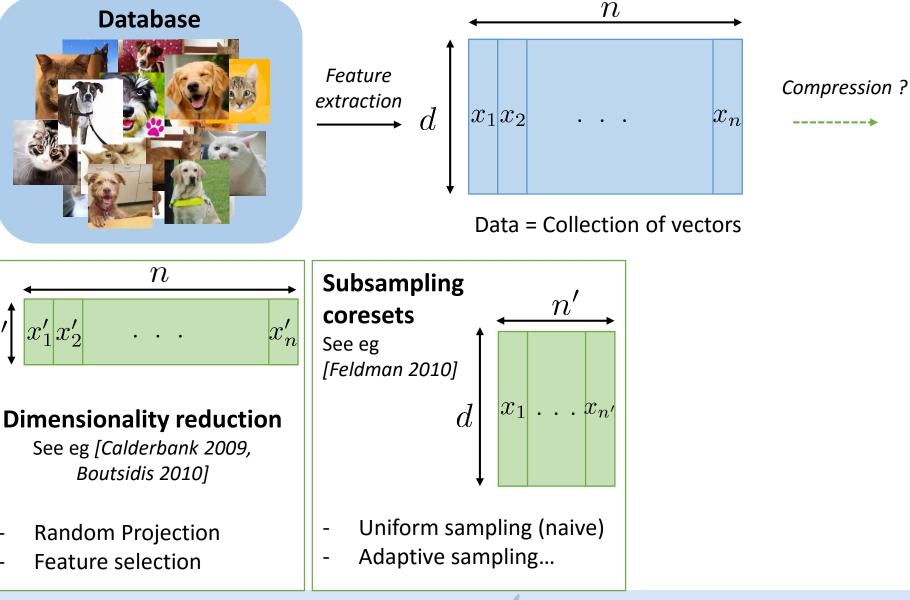
Data = Collection of vectors



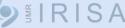
Dimensionality reduction

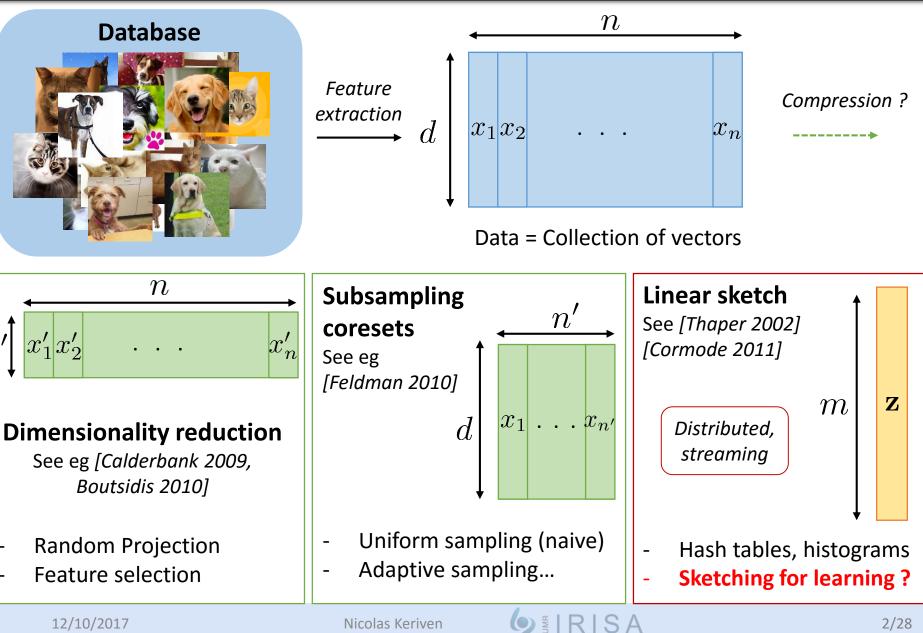
See eg [Calderbank 2009, Boutsidis 2010]

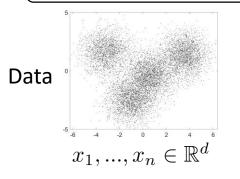
- Random Projection
- Feature selection

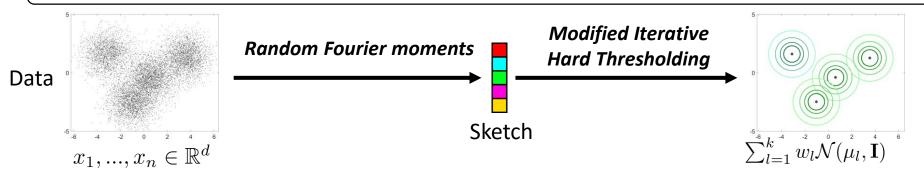


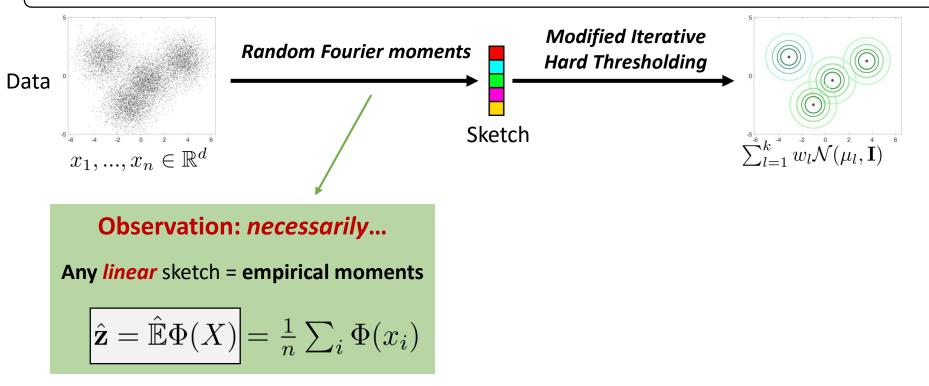
12/10/2017

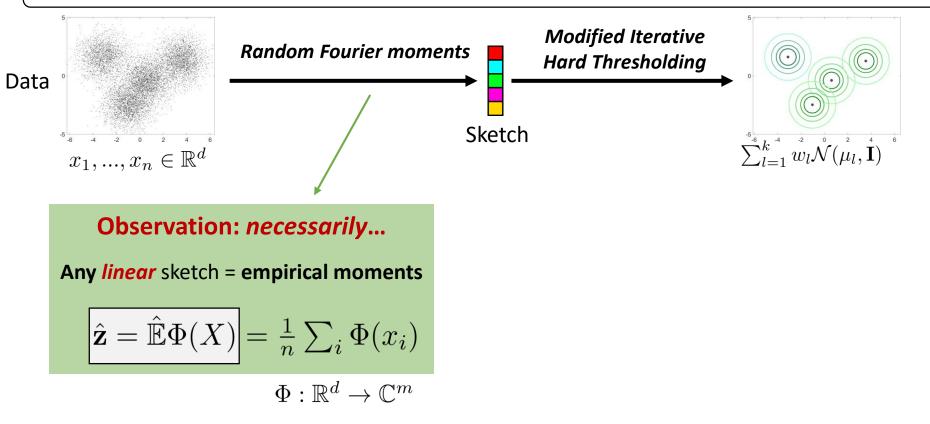


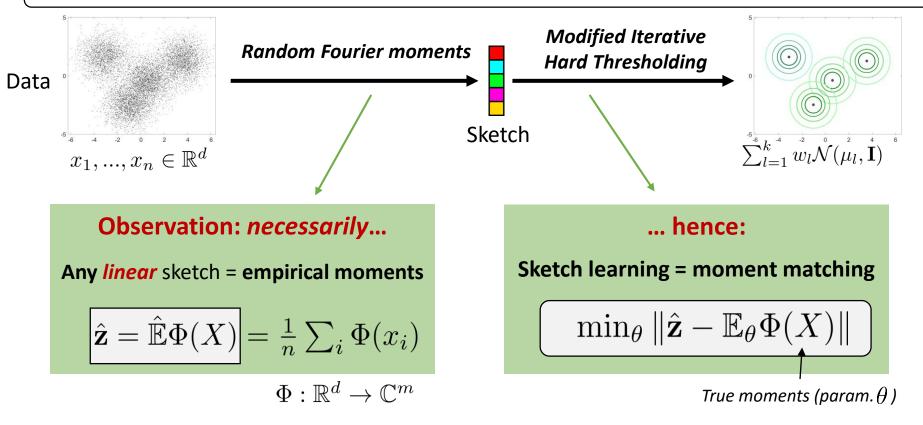




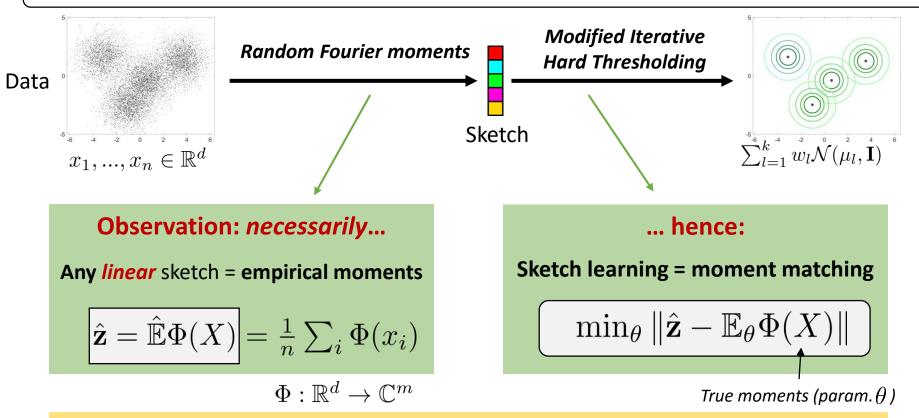








Practical illustration: sketched Gaussian Mixture Model estimation with Id cov. [Bourrier 2013]



Good empirical properties of the « sketching » function $\, \Phi \,$

- « Sufficient » dimension $\,m\,$ (size of the sketch)
- Randomly designed

Questions

12/10/2017

Questions

- Generalize to other mixture models? New algorithm?
- Theoretical guarantees?

Questions

- Generalize to other mixture models? New algorithm?
- Theoretical guarantees?

Contributions of this thesis

Questions

- Generalize to other mixture models? New algorithm?
- > Theoretical guarantees?

Contributions of this thesis

- Algorithmic: heuristic greedy algorithm for any sketched mixture model estimation
 - General GMM estimation
 - Sketched k-means
 - Mixture of multivariate elliptic α -stable distributions estimation

Questions

- Generalize to other mixture models? New algorithm?
- Theoretical guarantees?

Contributions of this thesis

- Algorithmic: heuristic greedy algorithm for any sketched mixture model estimation
 - General GMM estimation
 - Sketched k-means
 - Mixture of multivariate elliptic α -stable distributions estimation
- > **Theoretical:** Information-preservation guarantees
 - Recovery conditions for generic models
 - Additional focus on mixture models

Outline

Sketched Mixture Model Estimation

A flexible greedy algorithm

Experiments

Information-preservation guarantees

Generic analysis

Statistical Learning with sketches of limited size

Conclusion

Outline

Sketched Mixture Model Estimation

A flexible greedy algorithm

Experiments

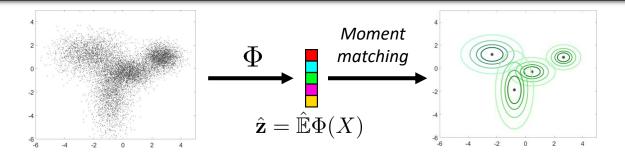
Information-preservation guarantees

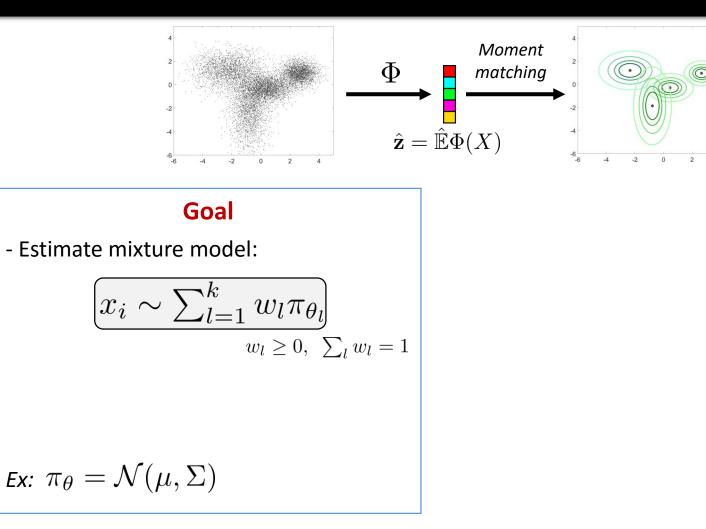
Generic analysis

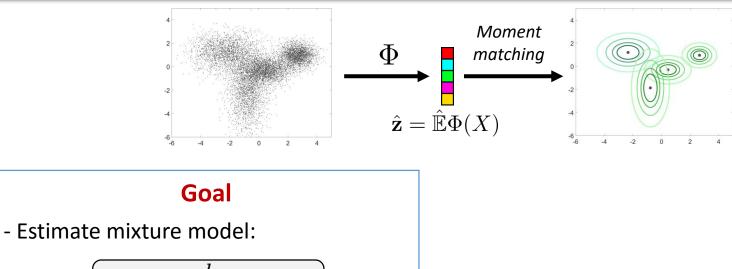
Statistical Learning with sketches of limited size

Conclusion

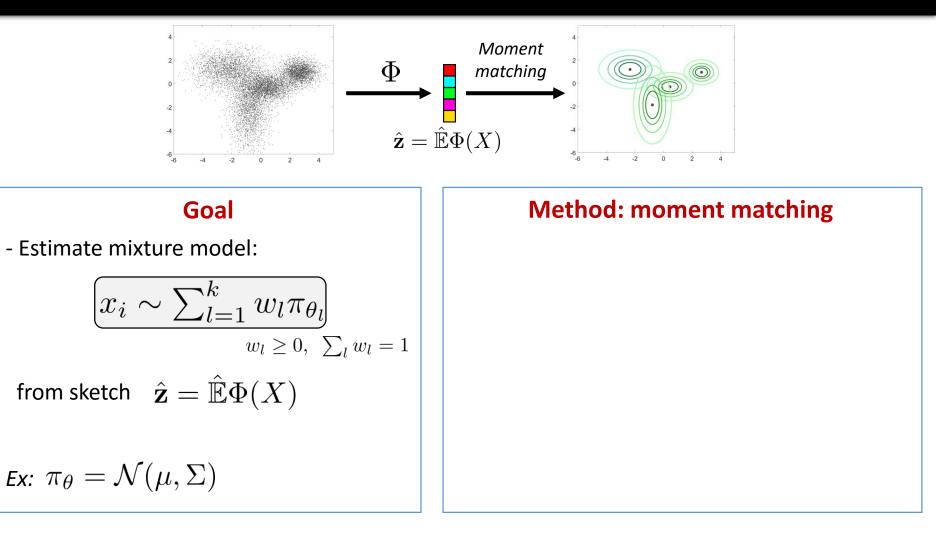
12/10/2017

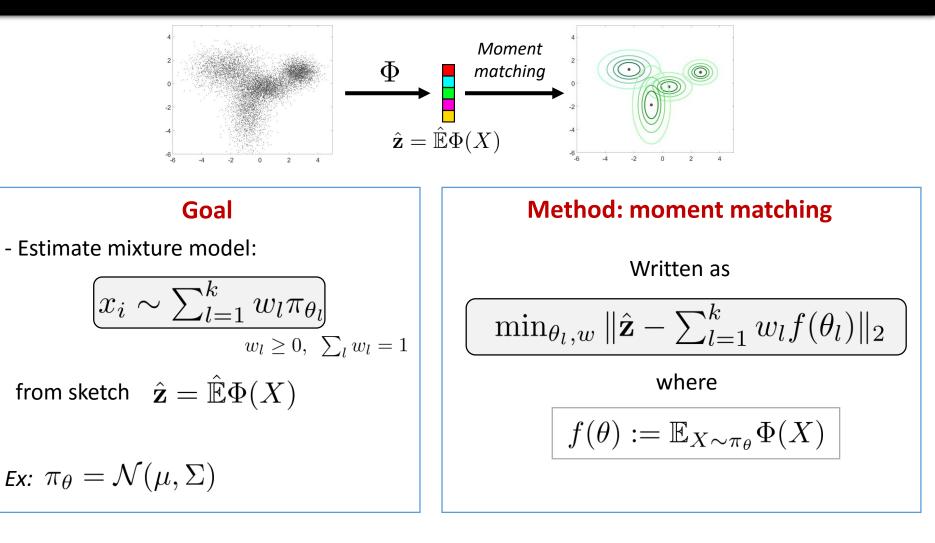


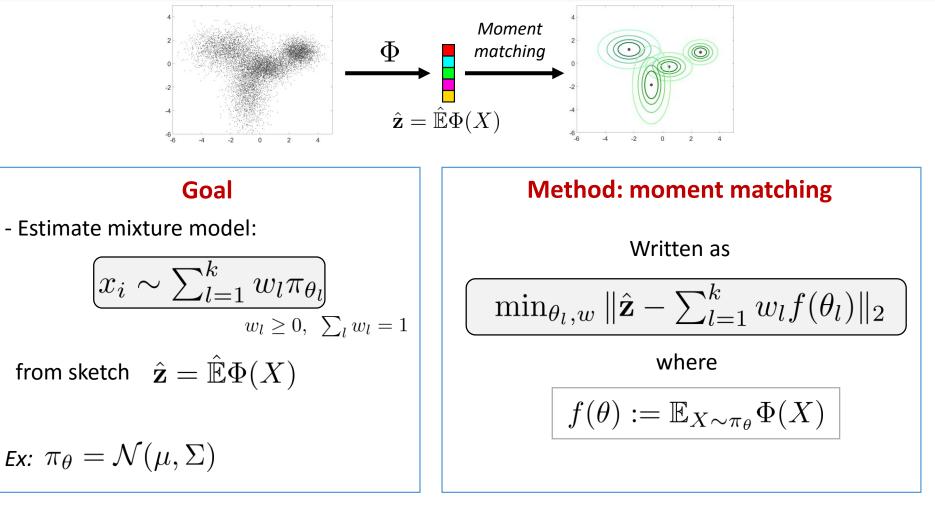




$$\begin{aligned} x_i \sim \sum_{l=1}^{\kappa} w_l \pi_{\theta_l} \\ w_l \ge 0, \ \sum_l w_l = 1 \end{aligned}$$
from sketch $\hat{\mathbf{z}} = \hat{\mathbb{E}} \Phi(X)$
Ex: $\pi_{\theta} = \mathcal{N}(\mu, \Sigma)$

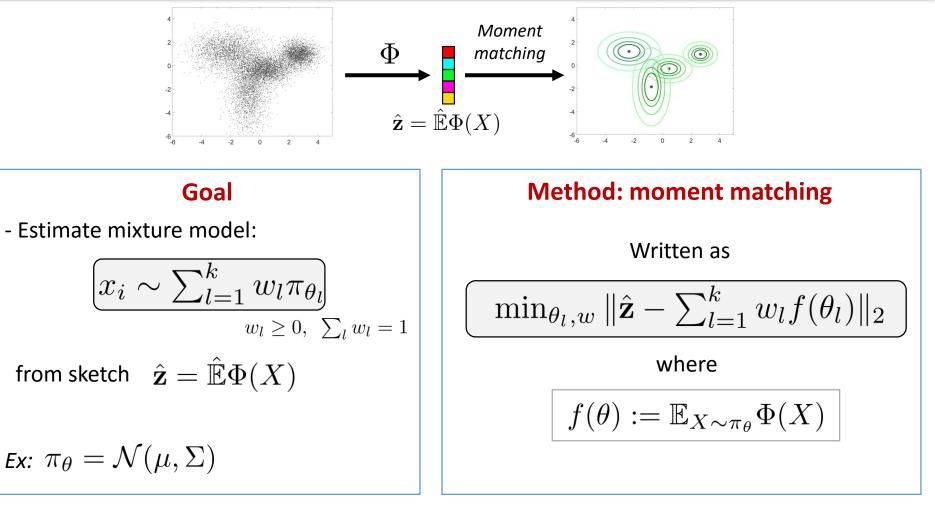






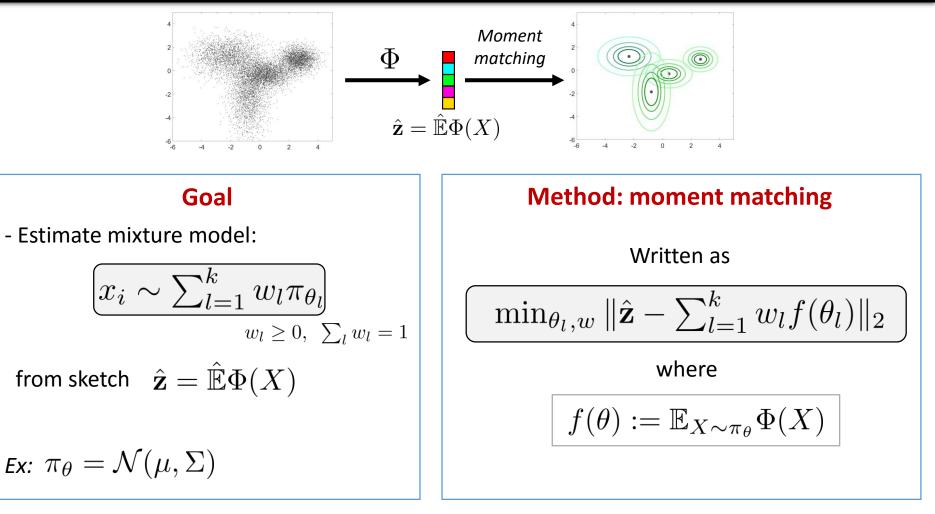
Non-convex minimization

Sketched mixture model estimation



- Non-convex minimization
- Convex relaxation? (super-resolution)

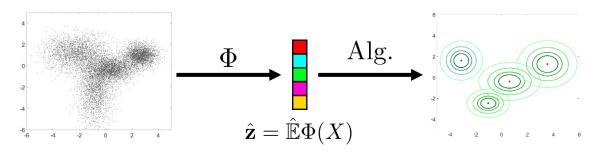
Sketched mixture model estimation



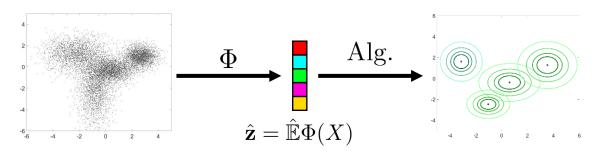
- Non-convex minimization
- Convex relaxation? (super-resolution)
- Proposed approach: greedy heuristic

Nicolas Keriven

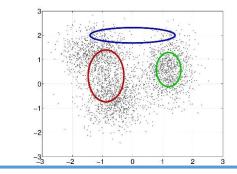
SIRISA

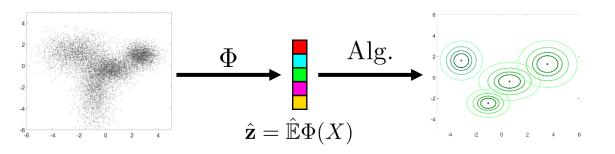


Algorithm: Compressive Learning OMPR (CL-OMPR)

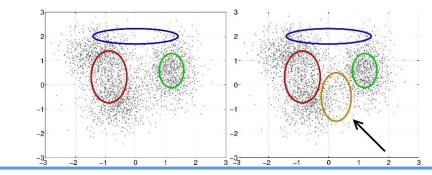


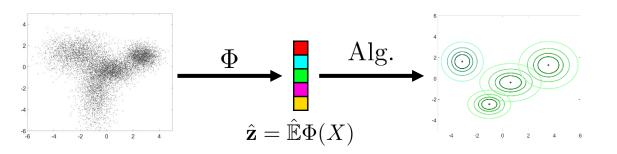
Algorithm: Compressive Learning OMPR (CL-OMPR)



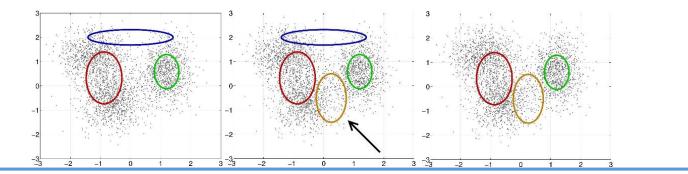


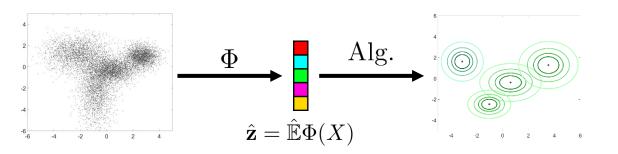
Algorithm: Compressive Learning OMPR (CL-OMPR)



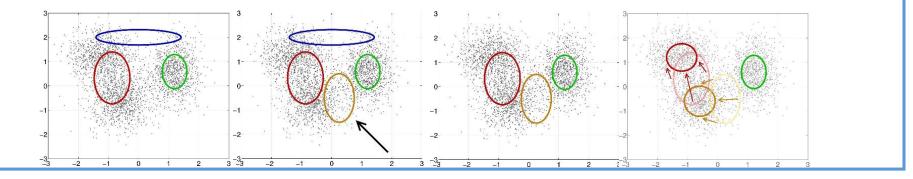


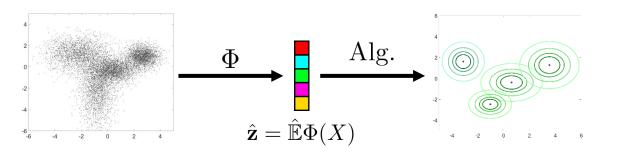
Algorithm: Compressive Learning OMPR (CL-OMPR)





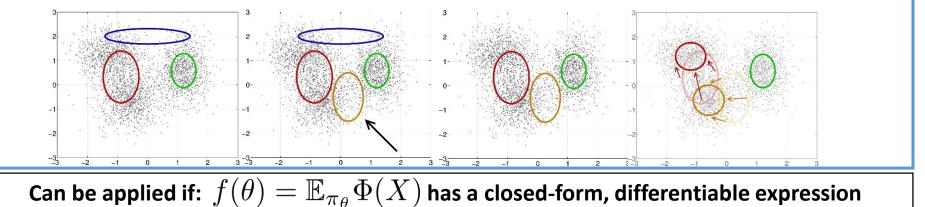
Algorithm: Compressive Learning OMPR (CL-OMPR)



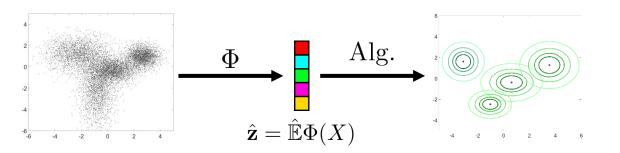


Algorithm: Compressive Learning OMPR (CL-OMPR)

Continuous (off-the-grid) adaptation of Orthogonal Matching Pursuit with Replacement [Jain 2011]

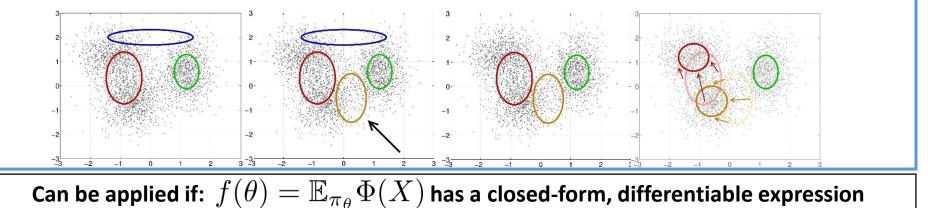


12/10/2017



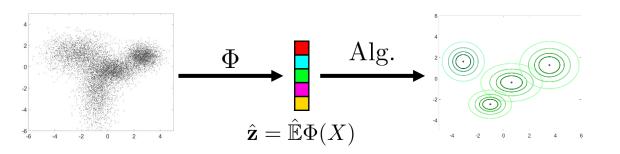
Algorithm: Compressive Learning OMPR (CL-OMPR)

Continuous (off-the-grid) adaptation of Orthogonal Matching Pursuit with Replacement [Jain 2011]



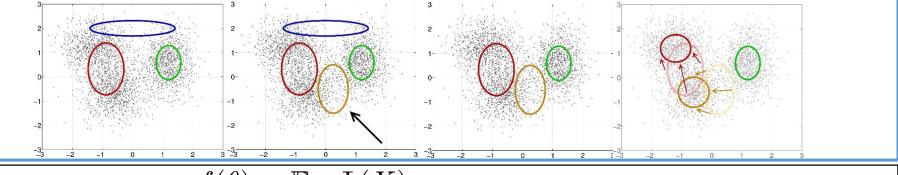
In experiments:

 Φ : Random Fourier sampling [Bourrier 2013] (with new distribution of frequencies)



Algorithm: Compressive Learning OMPR (CL-OMPR)

Continuous (off-the-grid) adaptation of Orthogonal Matching Pursuit with Replacement [Jain 2011]



Can be applied if: $f(\theta) = \mathbb{E}_{\pi_{\theta}} \Phi(X)$ has a closed-form, differentiable expression

In experiments:

 Φ : Random Fourier sampling [Bourrier 2013] (with new distribution of frequencies)

Model such that: π_{θ} has a closed-form characteristic function

Outline

Sketched Mixture Model Estimation

A flexible greedy algorithm

Experiments

Information-preservation guarantees

Generic analysis

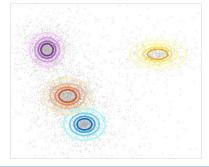
Statistical Learning with sketches of limited size

Conclusion

12/10/2017

Models

GMM diagonal cov.



Sketched mixture model estimation

Available at *sketchml.gforge.inria.fr*

$$\pi_{\theta} = \mathcal{N}(\mu, diag(\sigma))$$
$$\theta = (\mu, \sigma) \in \mathbb{R}^{2d}$$

Classic approach on full data

Algorithm : EM [Dempster 1977] (VLFeat's gmm)

12/10/2017

Models

GMM diagonal cov.

Mixture of Diracs

Sketched mixture model estimation

Available at *sketchml.gforge.inria.fr*

$$\pi_{\theta} = \mathcal{N}(\mu, diag(\sigma))$$
$$\theta = (\mu, \sigma) \in \mathbb{R}^{2d}$$

$$\pi_{ heta} = \delta_{ heta} \quad heta \in \mathbb{R}^d$$
iclustered distribution = noisy

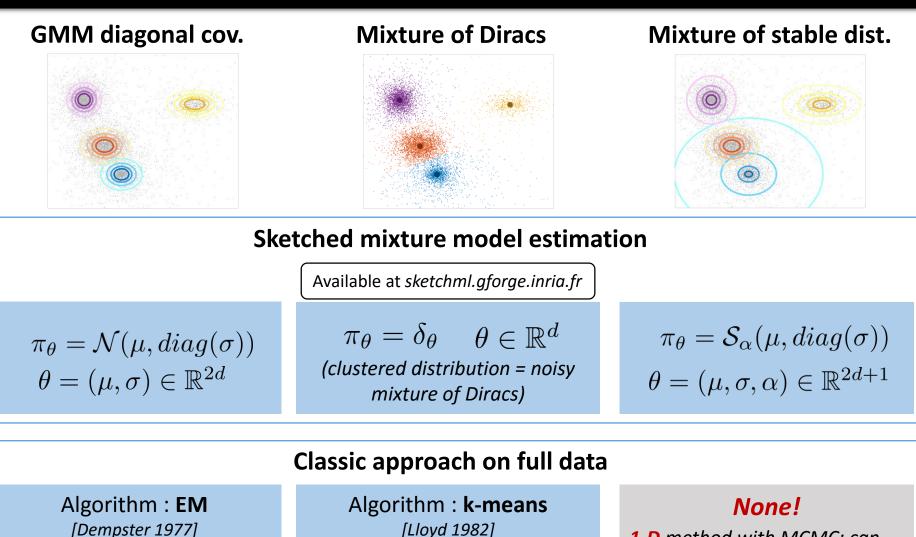
mixture of Diracs)

Classic approach on full data

Algorithm : **EM** [Dempster 1977] (VLFeat's gmm)

Algorithm : k-means [Lloyd 1982] (Matlab's kmeans)

Models



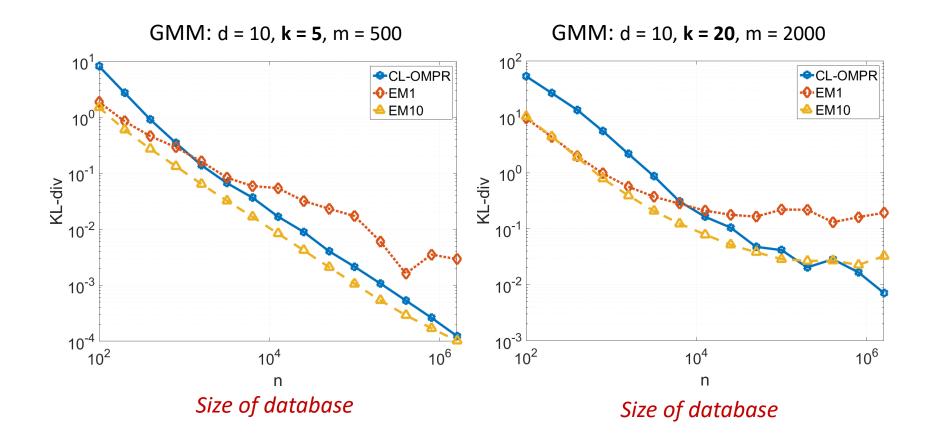
(Matlab's kmeans)

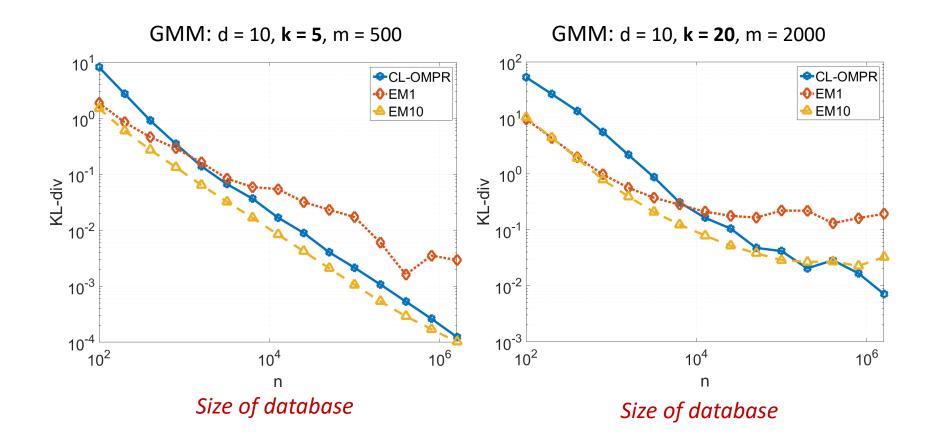
S | R | S A

1-D method with MCMC: can be very long...

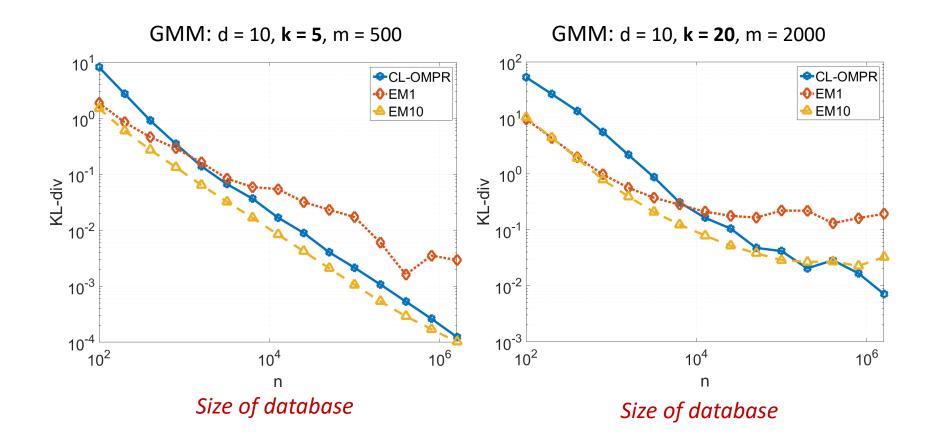
(VLFeat's gmm)

9/28





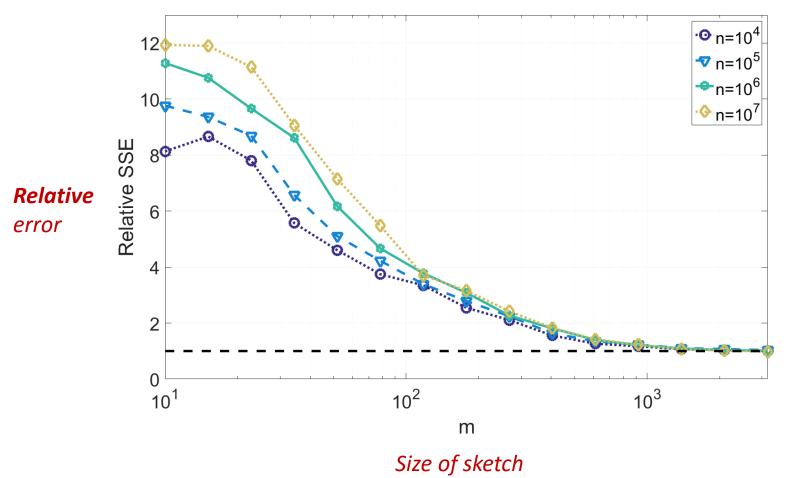
• **Does not need replicates** (despite some randomness in CL-OMPR)



- **Does not need replicates** (despite some randomness in CL-OMPR)
- Comparatively better on large databases (despite fixed sketch size)

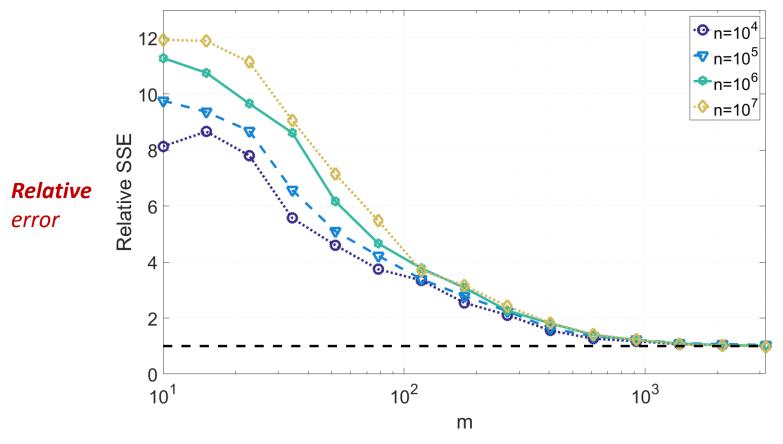
RISA

k-means: d = 10, k = 10



SIRISA

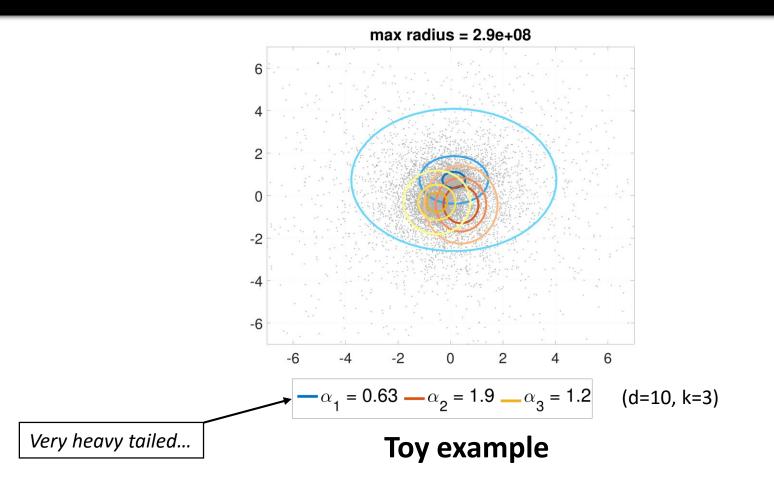
k-means: d = 10, k = 10



Size of sketch

- Size of sketch m independent of size of data n
 - Intuitively: dependent on complexity of the problem $k, d \dots$

Alpha stable on synthetic data: toy example



 CL-OMPR able to precisely estimate all parameters (10⁻² precision in approx. 80 sec)

(reported result for **1D** approaches with MCMC: 10⁻¹ precision in 1.5 hours)

Application on real data

• Efficient at large scales even on real data?

12/10/2017

Application on real data

• Efficient at large scales even on real data?

Classic method for **speaker verification** [Reynolds 2000] (for proof of concept) NIST 2005 database, MFCCs.

GMM (d=12, k=64, m=10000)

Results (EER, lower is better)

- EM on **300 000** MFCCs: **29.53**
- Sketch on 200 millions MFCCs: 28.96 (120 000-fold compression)

Application on real data

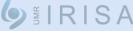
Classic method for **speaker verification**

• Efficient at large scales even on real data?

[Reynolds 2000] (for proof of concept) NIST augmented MNIST database [Loosli 2007]. 2005 database, MFCCs. k-means (d=10, k=10, m=1000) GMM (d=12, k=64, m=10000) n = 70 000 n = 1 000 000 0.95 **Results (EER, lower is better)** 0.95 Adjusted Rand Index 0.85 0.8 0.82 0.9 EM on 300 000 MFCCs: 29.53 ٠ 0.9 0.85 Sketch on 200 millions MFCCs: 28.96 ٠ 0.8 (120 000-fold compression) L 0.75

0.7

1 rep.



Spectral clustering for classification [Uw 2001],

0.7

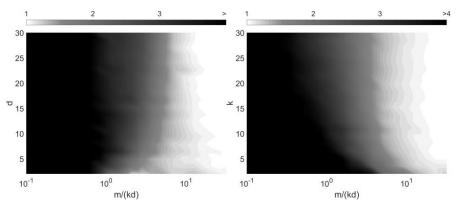
1 rep.

kmeans CL-OMPR

5 rep.

5 rep.

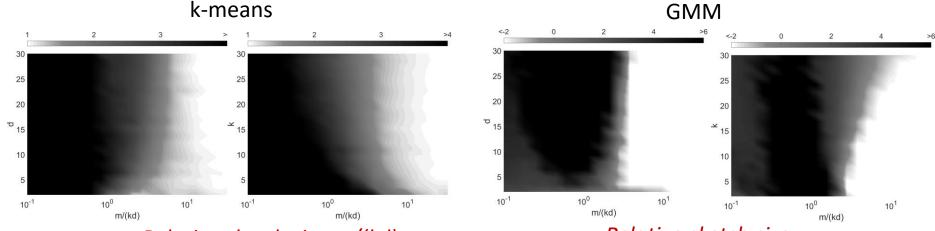
k-means



Relative sketch size m/(kd)

12/10/2017

k-means



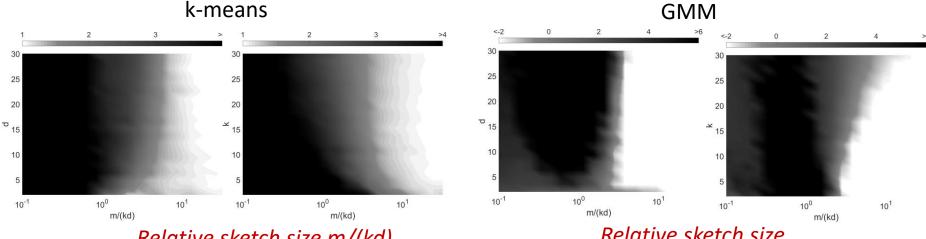
Relative sketch size m/(kd)

Relative sketch size

12/10/2017

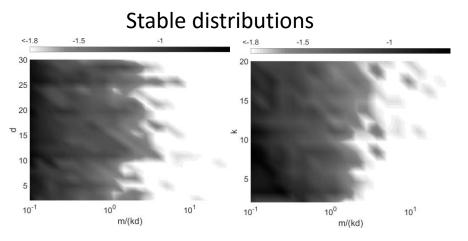
Nicolas Keriven

k-means



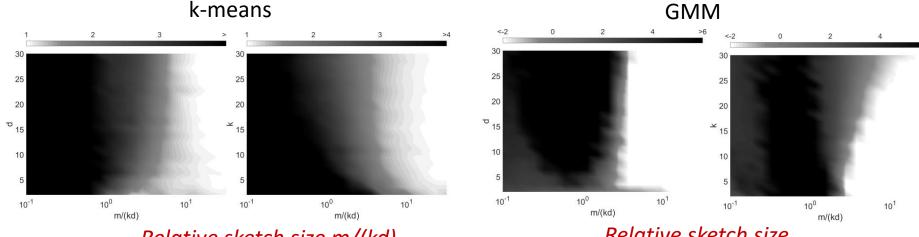
Relative sketch size m/(kd)

Relative sketch size



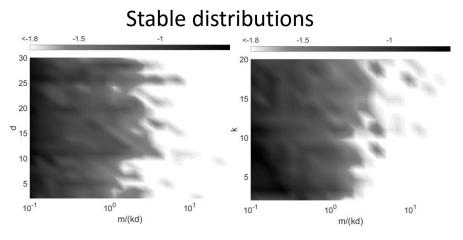
Relative sketch size

k-means



Relative sketch size m/(kd)

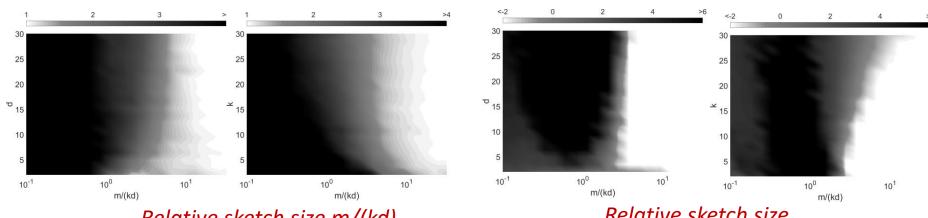
Relative sketch size



Sufficient sketch size $m \approx \mathcal{O}(kd)$

Relative sketch size

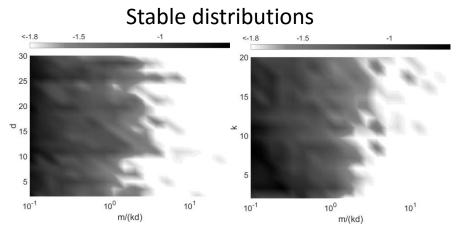
k-means

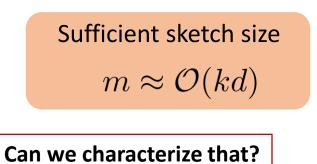


Relative sketch size m/(kd)

Relative sketch size

GMM





Relative sketch size

12/10/2017

Outline

Sketched Mixture Model Estimation

A flexible greedy algorithm

Experiments

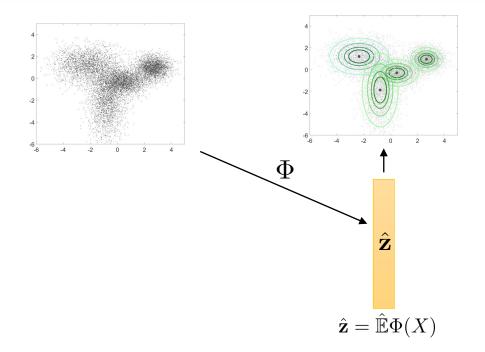
Information-preservation guarantees

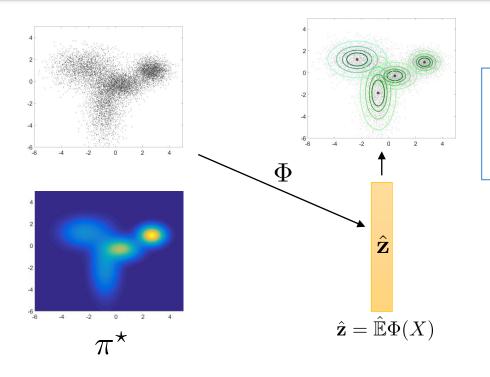
Generic analysis

Statistical Learning with sketches of limited size

Conclusion

12/10/2017

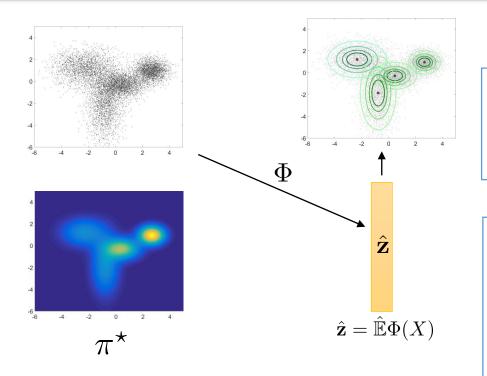




Assumption on the data

- True distribution:

$$(x_1, ..., x_n \stackrel{i.i.d.}{\sim} \pi^{\star})$$

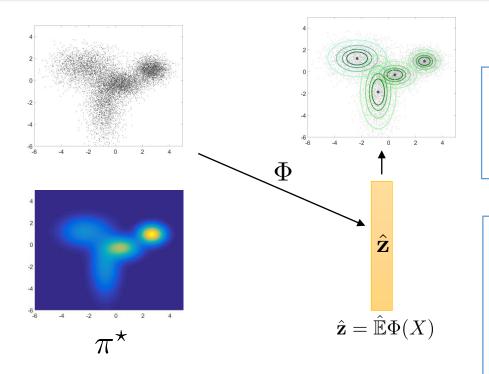


Assumption on the data

- True distribution:

$$x_1, ..., x_n \stackrel{i.i.d.}{\sim} \pi^{\star}$$

Reformulation of the sketching



Assumption on the data

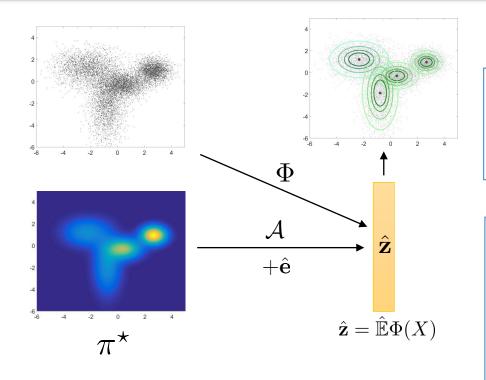
- True distribution:

$$x_1, ..., x_n \stackrel{i.i.d.}{\sim} \pi^{\star}$$

Reformulation of the sketching

- Linear operator:

$$\mathcal{A}\pi = \mathbb{E}_{X \sim \pi} \Phi(X)$$



Assumption on the data

- True distribution:

$$x_1, ..., x_n \stackrel{i.i.d.}{\sim} \pi^{\star}$$

Reformulation of the sketching

- Linear operator:

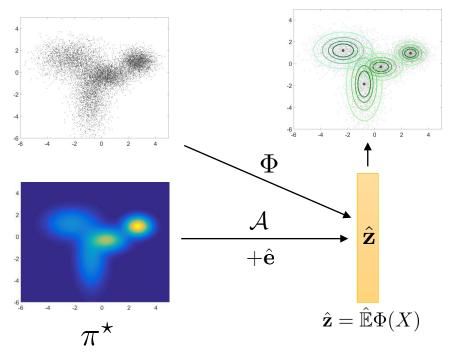
$$\mathcal{A}\pi = \mathbb{E}_{X \sim \pi} \Phi(X)$$

« Noisy » linear measurement:

$$\hat{\mathbf{z}} = \mathcal{A}\pi^{\star} + \hat{\mathbf{e}}$$

Noise $\hat{\mathbf{e}} = \hat{\mathbb{E}}\Phi(X) - \mathbb{E}_{\pi^{\star}}\Phi(X)$ small by Law of Large Numbers

Nicolas Keriven



- Data = distribution
- Sketch = noisy linear measurement of the distribution (non-linear in data)

Assumption on the data

- True distribution:

$$x_1, ..., x_n \stackrel{i.i.d.}{\sim} \pi^*$$

Reformulation of the sketching

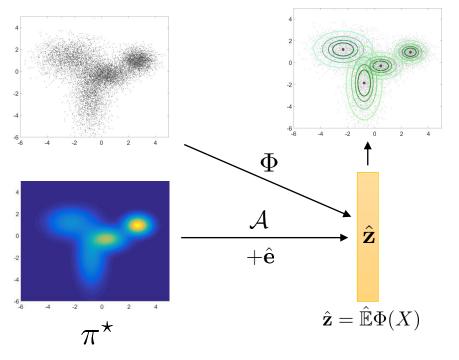
- Linear operator:

$$\mathcal{A}\pi = \mathbb{E}_{X \sim \pi} \Phi(X)$$

« Noisy » linear measurement:

$$\hat{\mathbf{z}} = \mathcal{A}\pi^{\star} + \hat{\mathbf{e}}$$

Noise $\hat{\mathbf{e}} = \hat{\mathbb{E}} \Phi(X) - \mathbb{E}_{\pi^*} \Phi(X)$ small by Law of Large Numbers



- Data = distribution
- Sketch = noisy linear measurement of the distribution (non-linear in data)
- Estimation problem = *linear inverse* problem

Assumption on the data

- True distribution:

$$x_1, ..., x_n \stackrel{i.i.d.}{\sim} \pi^{\star}$$

Reformulation of the sketching

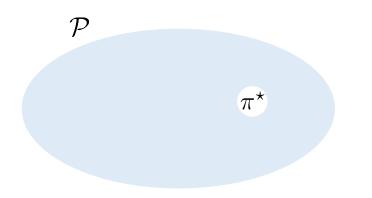
- Linear operator:

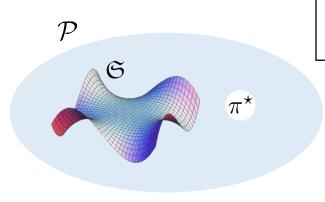
$$\mathcal{A}\pi = \mathbb{E}_{X \sim \pi} \Phi(X)$$

« Noisy » linear measurement:

$$\hat{\mathbf{z}} = \mathcal{A}\pi^{\star} + \hat{\mathbf{e}}$$

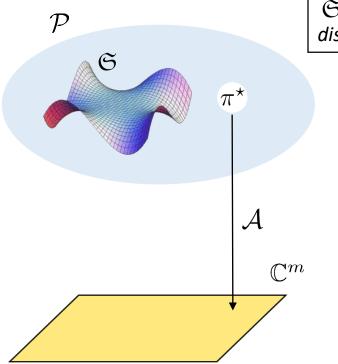
Noise $\hat{\mathbf{e}} = \hat{\mathbb{E}} \Phi(X) - \mathbb{E}_{\pi^*} \Phi(X)$ small by Law of Large Numbers



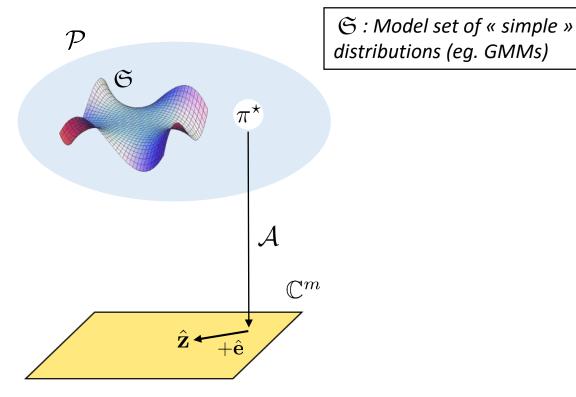


 \mathfrak{S} : Model set of « simple » distributions (eg. GMMs)

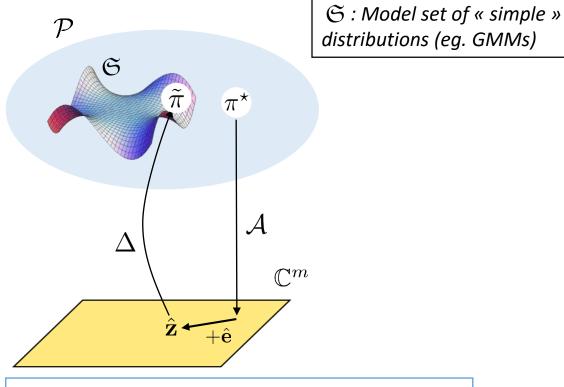
Nicolas Keriven



 \mathfrak{S} : Model set of « simple » distributions (eg. GMMs)



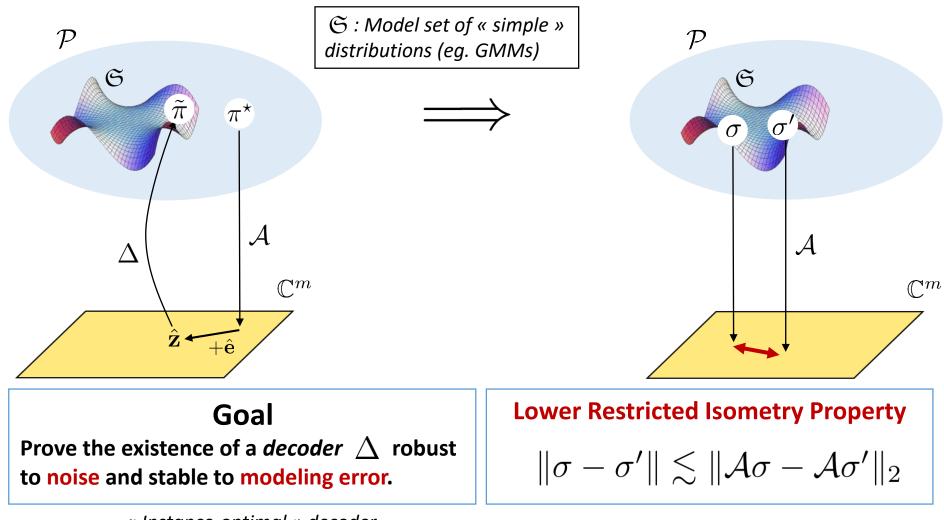
Nicolas Keriven



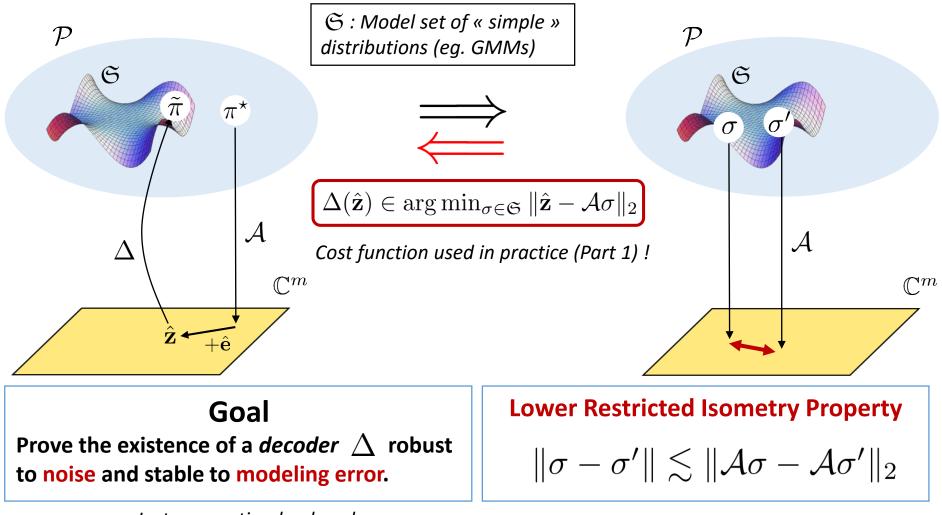
Goal

Prove the existence of a *decoder* Δ robust to noise and stable to modeling error.

« Instance-optimal » decoder

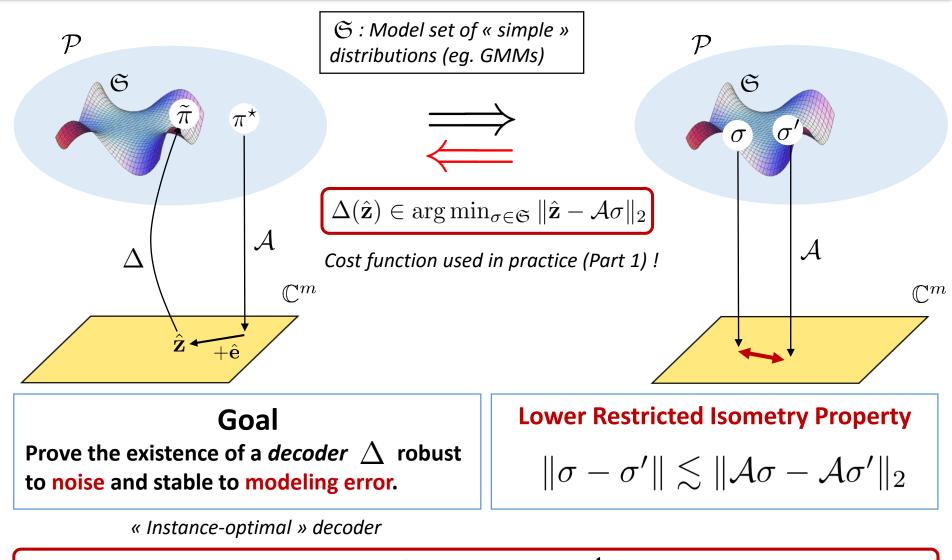


« Instance-optimal » decoder



« Instance-optimal » decoder

Nicolas Keriven



New goal: find/construct models \mathfrak{S} and operators \mathcal{A} that satisfy the LRIP (w.h.p.)

Goal: LRIP w.h.p. on $\mathcal{A}, \forall \sigma, \sigma' \in \mathfrak{S}, \|\sigma - \sigma'\| \lesssim \|\mathcal{A}\sigma - \mathcal{A}\sigma'\|_2$.

12/10/2017

Goal: LRIP w.h.p. on $\mathcal{A}, \forall \sigma, \sigma' \in \mathfrak{S}, \|\sigma - \sigma'\| \lesssim \|\mathcal{A}\sigma - \mathcal{A}\sigma'\|_2$.

Pointwise LRIP

Construction of $\mathcal A$:

Kernel mean [Gretton 2006, Borgwardt 2006] Random features [Rahimi 2007]

Goal: LRIP w.h.p. on $\mathcal{A}, \forall \sigma, \sigma' \in \mathfrak{S}, \|\sigma - \sigma'\| \lesssim \|\mathcal{A}\sigma - \mathcal{A}\sigma'\|_2$.

Pointwise LRIP

Construction of \mathcal{A} :

Kernel mean [Gretton 2006, Borgwardt 2006] Random features [Rahimi 2007] $\forall \sigma, \sigma', \text{ w.h.p. on } \mathcal{A}, \text{ LRIP.}$

Goal: LRIP w.h.p. on $\mathcal{A}, \forall \sigma, \sigma' \in \mathfrak{S}, \|\sigma - \sigma'\| \lesssim \|\mathcal{A}\sigma - \mathcal{A}\sigma'\|_2$.

Pointwise LRIP

Construction of $\mathcal A$:

Kernel mean [Gretton 2006, Borgwardt 2006] Random features [Rahimi 2007] $\forall \sigma, \sigma', \text{ w.h.p. on } \mathcal{A}, \text{ LRIP.}$

Extension to LRIP

Covering numbers (compacity) of the normalized secant set $\mathcal{S}(\mathfrak{S})$

Goal: LRIP w.h.p. on $\mathcal{A}, \forall \sigma, \sigma' \in \mathfrak{S}, \|\sigma - \sigma'\| \lesssim \|\mathcal{A}\sigma - \mathcal{A}\sigma'\|_2$.

Pointwise LRIP

Construction of $\mathcal A$:

Kernel mean [Gretton 2006, Borgwardt 2006] Random features [Rahimi 2007] $\forall \sigma, \sigma', \text{ w.h.p. on } \mathcal{A}, \text{ LRIP.}$

Extension to LRIP

Covering numbers (compacity) of the normalized secant set $\mathcal{S}(\mathfrak{S})$

Subset of a unit ball (infinite dimension) that only depends on \mathfrak{S}

Pointwise LRIP

Kernel mean [Gretton 2006, Borgwardt 2006] Random features [Rahimi 2007] $\forall \sigma, \sigma', \text{ w.h.p. on } \mathcal{A}, \text{ LRIP.}$

w.h.p. on $\mathcal{A}, \forall \sigma, \sigma'$, LRIP.

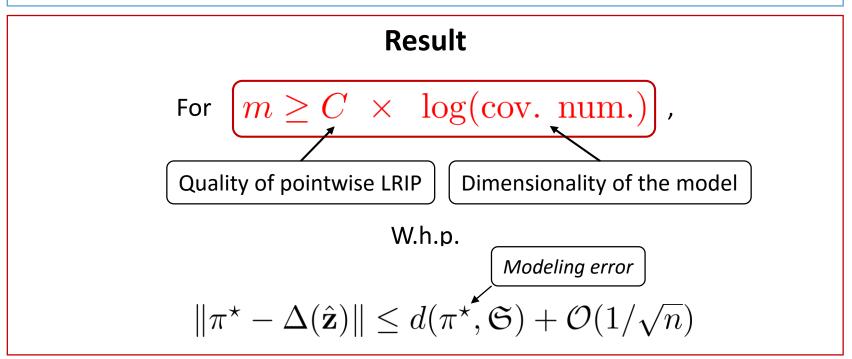
Extension to LRIP

Covering numbers (compacity) of the normalized secant set $\mathcal{S}(\mathfrak{S})$

Subset of a unit ball (infinite dimension) that only depends on \mathfrak{S}

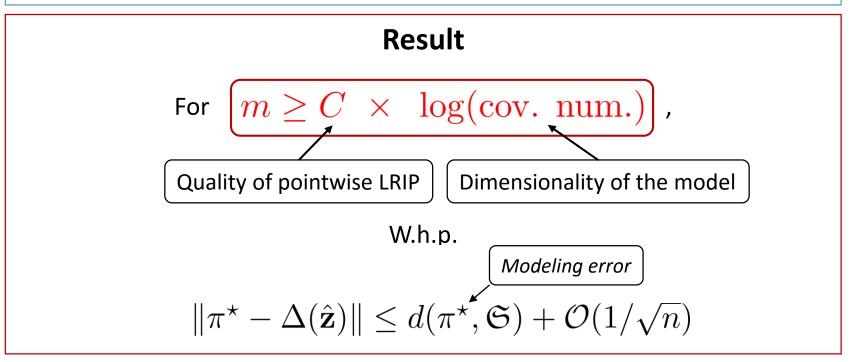
Main hypothesis

The *normalized secant set* $\mathcal{S}(\mathfrak{S})$ has finite covering numbers.



Main hypothesis

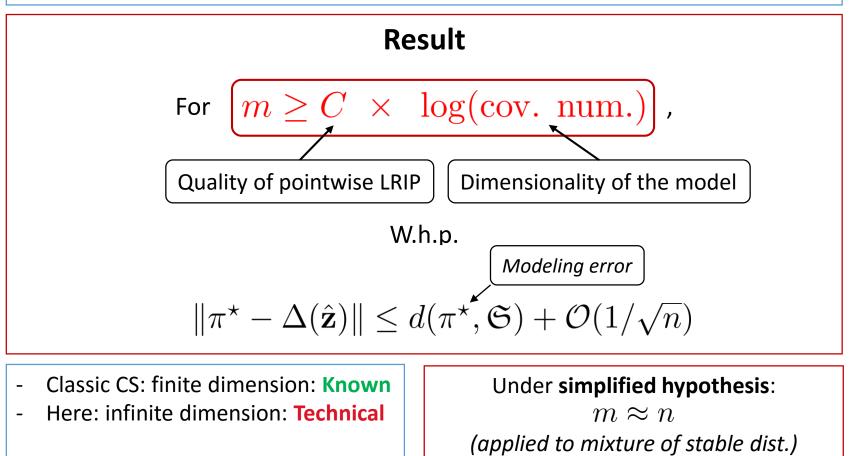
The *normalized secant set* $\mathcal{S}(\mathfrak{S})$ has finite covering numbers.



- Classic CS: finite dimension: Known
- Here: infinite dimension: Technical

Main hypothesis

The *normalized secant set* $\mathcal{S}(\mathfrak{S})$ has finite covering numbers.



Outline

Sketched Mixture Model Estimation

A flexible greedy algorithm

Experiments

Information-preservation guarantees

Main analysis and first results

Statistical Learning with sketches of limited size

Conclusion

12/10/2017

Key assumption for **mixture models**: *separation of components*

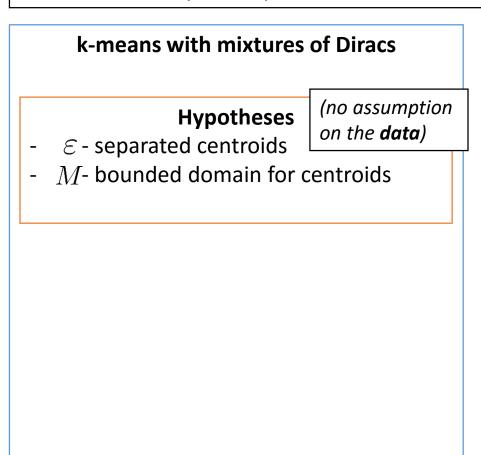
k-means with mixtures of Diracs

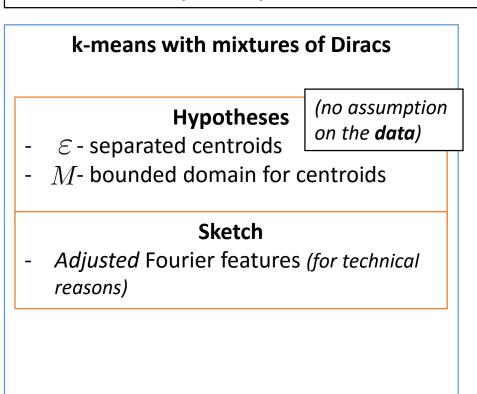
Key assumption for **mixture models**: *separation of components*

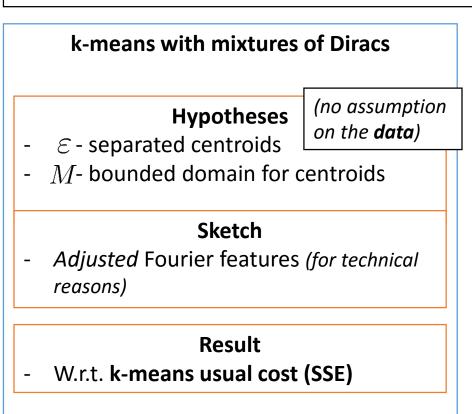
k-means with mixtures of Diracs

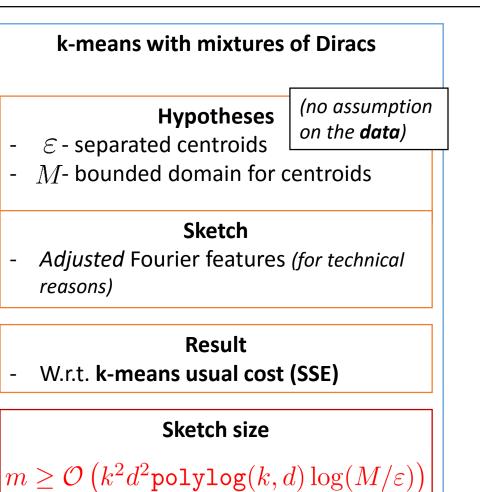
Hypotheses

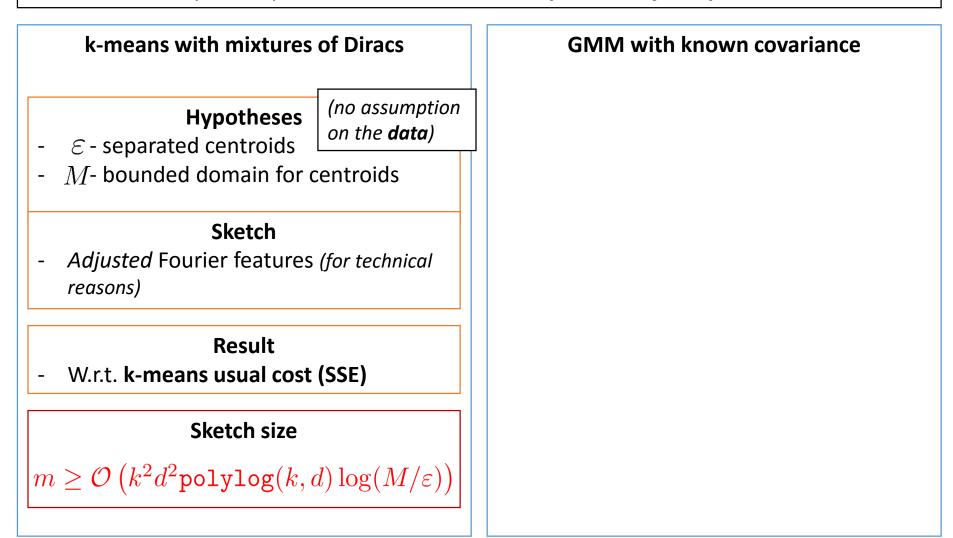
- \mathcal{E} separated centroids
- M- bounded domain for centroids

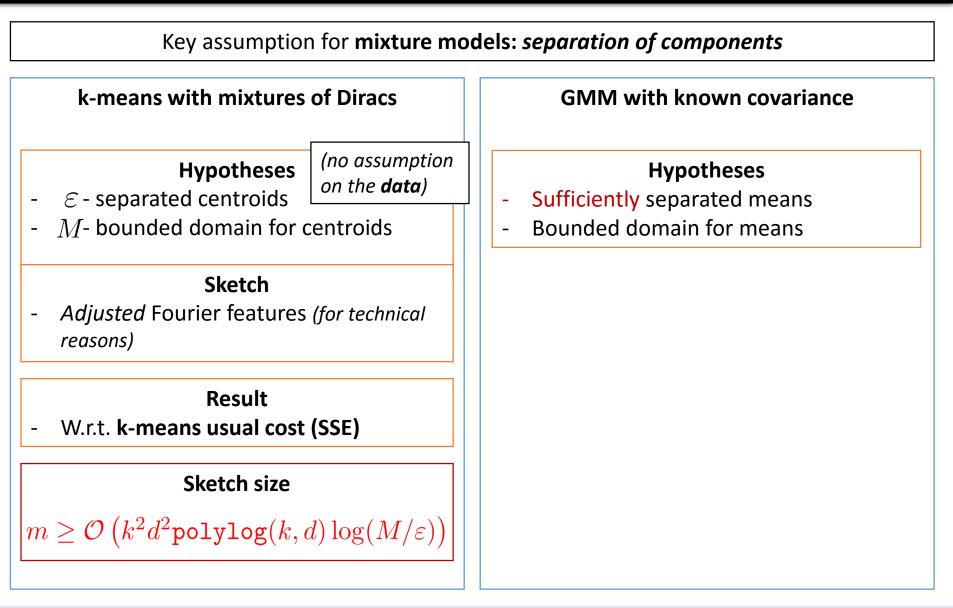


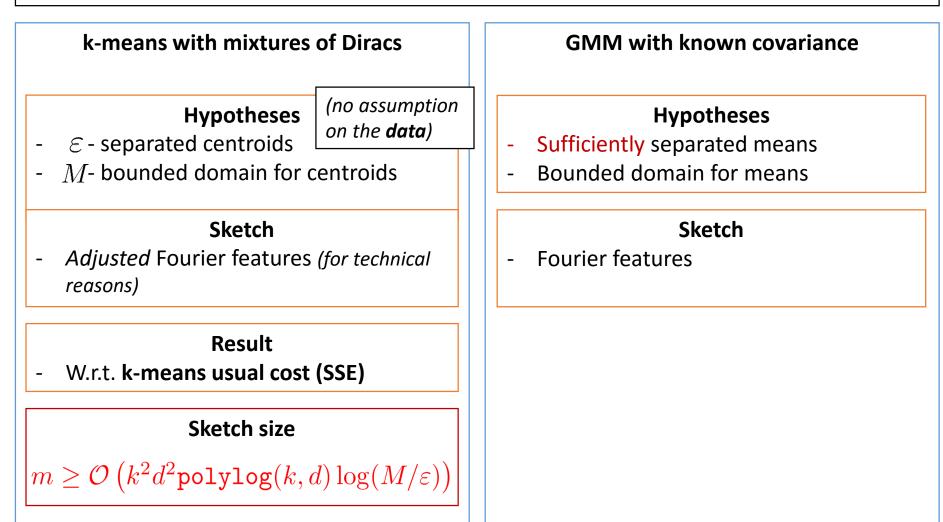


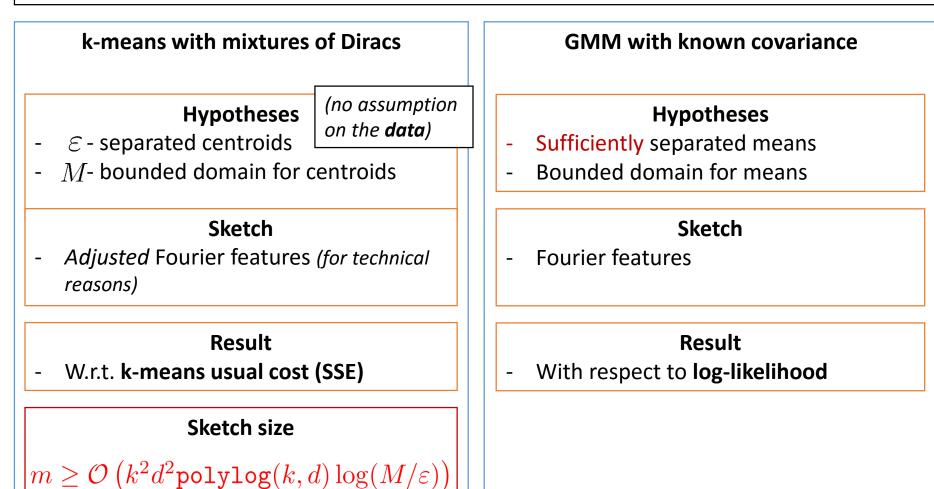


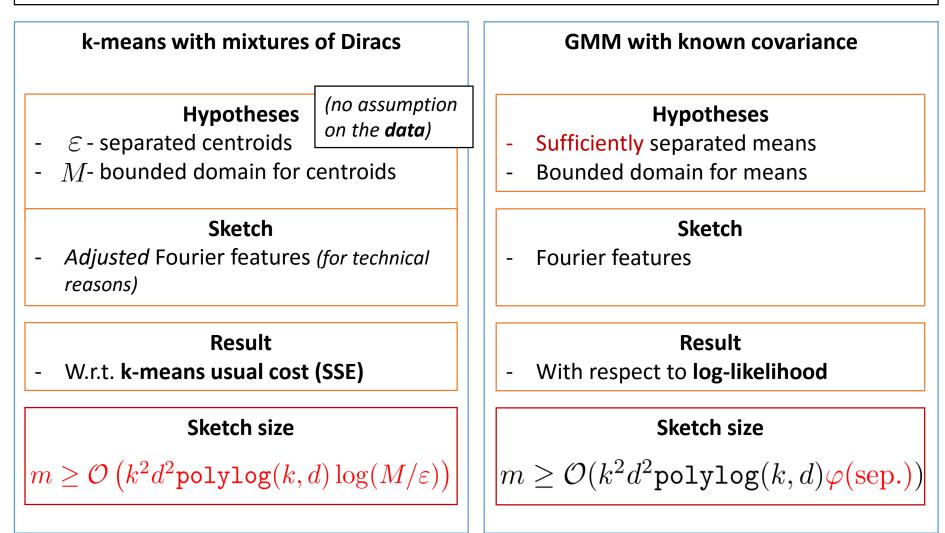




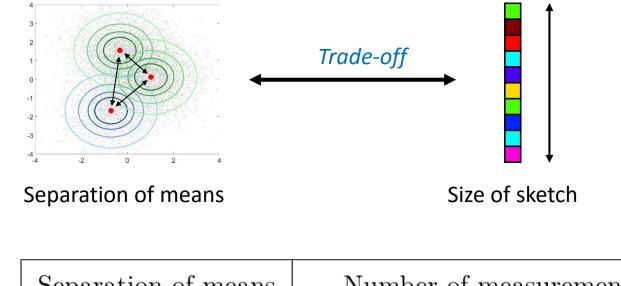








GMM trade-off



More High Freq.

Separation of means	Number of measurements
$\mathcal{O}\left(\sqrt{d\log k}\right)$	$m \geq \mathcal{O}\left(k^2 d^2 \cdot \texttt{polylog}(k, d)\right)$
$\mathcal{O}\left(\sqrt{d + \log k}\right)$	$m \geq \mathcal{O}\left(k^3 d^2 \cdot \texttt{polylog}(k,d)\right)$
$\mathcal{O}\left(\sqrt{\log k}\right)$	$m \geq \mathcal{O}\left(k^2 d^2 e^d \cdot \operatorname{polylog}(k,d)\right)$

SIRISA

Outline

Sketched Mixture Model Estimation

A flexible greedy algorithm

Experiments

Information-preservation guarantees

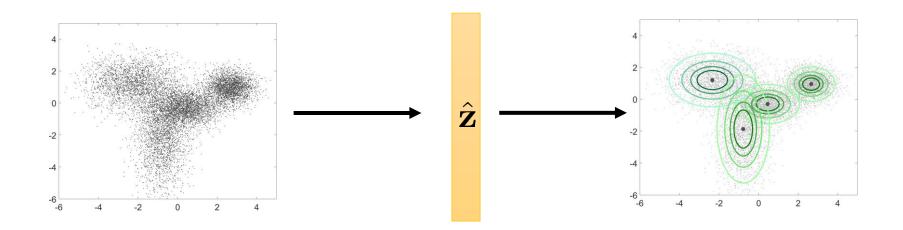
Main analysis and first results

Statistical Learning with sketches of limited size

Conclusion

12/10/2017

Sketch learning



- Sketching method for large-scale density estimation
 - Well-adapted to distributed or streaming context
 - Focus on mixture models

Summary of contributions

 Practical illustration: flexible greedy algorithm for any sketched mixture model estimation

Summary of contributions

- Practical illustration: flexible greedy algorithm for any sketched mixture model estimation
 - GMM with diagonal covariance
 - k-means (mixture of Diracs)
 - Mixture of multivariate elliptic stable distributions

Summary of contributions

- Practical illustration: flexible greedy algorithm for any sketched mixture model estimation
 - GMM with diagonal covariance
 - k-means (mixture of Diracs)
 - Mixture of multivariate elliptic stable distributions
- Validation on real and synthetic data

- Practical illustration: flexible greedy algorithm for any sketched mixture model estimation
 - GMM with diagonal covariance
 - k-means (mixture of Diracs)
 - Mixture of multivariate elliptic stable distributions
- Validation on real and synthetic data
- Information-preservation guarantees for sketched density estimation

- Practical illustration: flexible greedy algorithm for any sketched mixture model estimation
 - GMM with diagonal covariance
 - k-means (mixture of Diracs)
 - Mixture of multivariate elliptic stable distributions
- Validation on real and synthetic data
- Information-preservation guarantees for sketched density estimation
 - Infinite dimensional **Compressive Sensing** (Restricted isometry property)
 - Kernel methods on distributions (Kernel mean, Random features)

- Practical illustration: flexible greedy algorithm for any sketched mixture model estimation
 - GMM with diagonal covariance
 - k-means (mixture of Diracs)
 - Mixture of multivariate elliptic stable distributions
- Validation on real and synthetic data
- Information-preservation guarantees for sketched density estimation
 - Infinite dimensional **Compressive Sensing** (Restricted isometry property)
 - Kernel methods on distributions (Kernel mean, Random features)
- Generic assumptions of *low-dimensionality* of the model set

- Practical illustration: flexible greedy algorithm for any sketched mixture model estimation
 - GMM with diagonal covariance
 - k-means (mixture of Diracs)
 - Mixture of multivariate elliptic stable distributions
- Validation on real and synthetic data

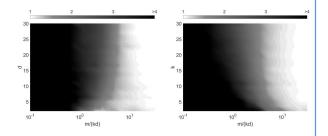
Information-preservation guarantees for sketched density estimation

- Infinite dimensional **Compressive Sensing** (Restricted isometry property)
- Kernel methods on distributions (Kernel mean, Random features)
- Generic assumptions of *low-dimensionality* of the model set
- Focus on mixture models
 - Estimator of mixture of multivariate elliptic stable distributions
 - Statistical learning with controlled sketch size for k-means, sketched GMM with known covariance

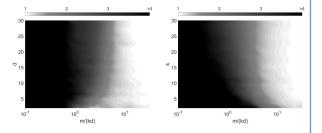
• Obtain algorithmic guarantees?

- Obtain algorithmic guarantees?
 - Similar algorithms can be found in e.g. **super-resolution** with other interpretations (Frank-Wolfe, conditional gradient...) [eg Bredies 2012...]
 - Convergence guarantees as $\,k \to \infty$, no guarantees for exactly $\,k\text{-sparse}$ measures...

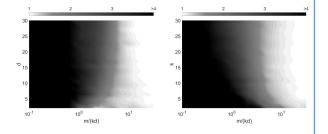
- Obtain algorithmic guarantees?
 - Similar algorithms can be found in e.g. **super-resolution** with other interpretations (Frank-Wolfe, conditional gradient...) [eg Bredies 2012...]
 - Convergence guarantees as $k \to \infty$, no guarantees for exactly k-sparse measures...
- Bridge observed gap between theory and practice ?



- Obtain algorithmic guarantees?
 - Similar algorithms can be found in e.g. **super-resolution** with other interpretations (Frank-Wolfe, conditional gradient...) [eg Bredies 2012...]
 - Convergence guarantees as $\,k \to \infty$, no guarantees for exactly $\,k\text{-sparse}$ measures...
- Bridge observed gap between theory and practice ?
 - Does *not* come from coverings numbers
 - Improve pointwise concentration?



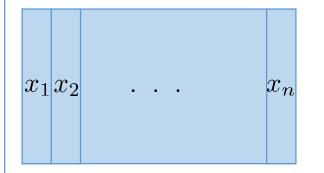
- Obtain algorithmic guarantees?
 - Similar algorithms can be found in e.g. **super-resolution** with other interpretations (Frank-Wolfe, conditional gradient...) [eg Bredies 2012...]
 - Convergence guarantees as $k \to \infty$, no guarantees for exactly k-sparse measures...
- Bridge observed gap between theory and practice ?
 - Does *not* come from coverings numbers
 - Improve pointwise concentration?
 - Recent result: $k^2 d^2 \rightarrow k^3 d$



- Combine with **dimension reduction** for **HD** data?
 - First map in low-d, then sketch

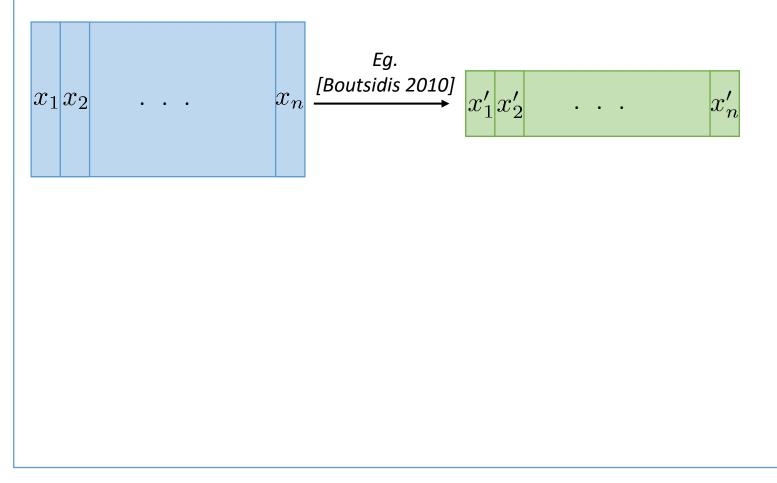
• Combine with **dimension reduction** for **HD** data?

• First map in low-d, then sketch



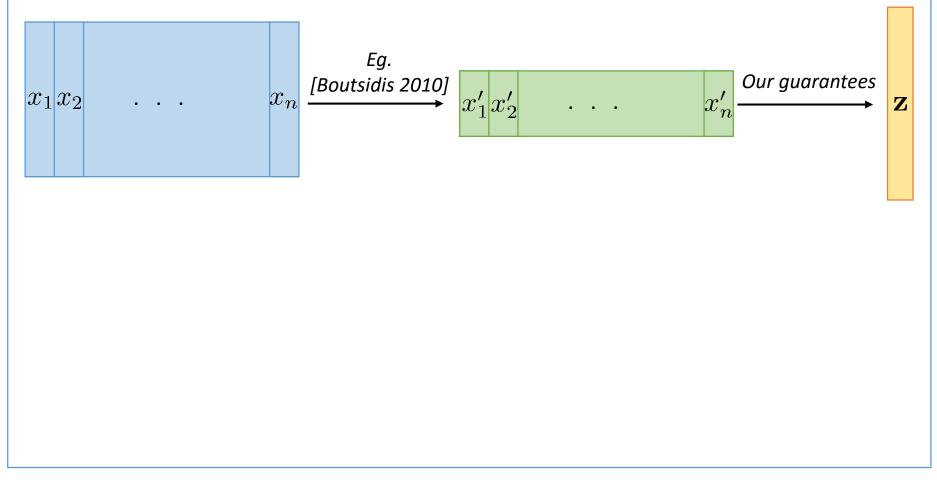
• Combine with **dimension reduction** for **HD** data?

• First map in low-d, then sketch

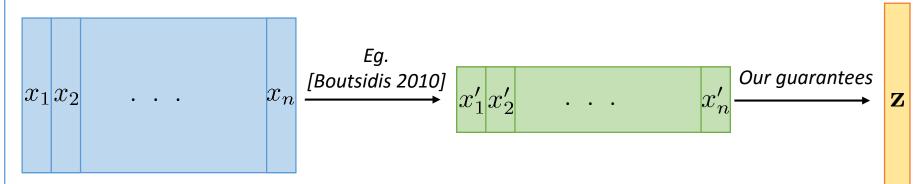


• Combine with **dimension reduction** for **HD** data?

• First map in low-d, then sketch



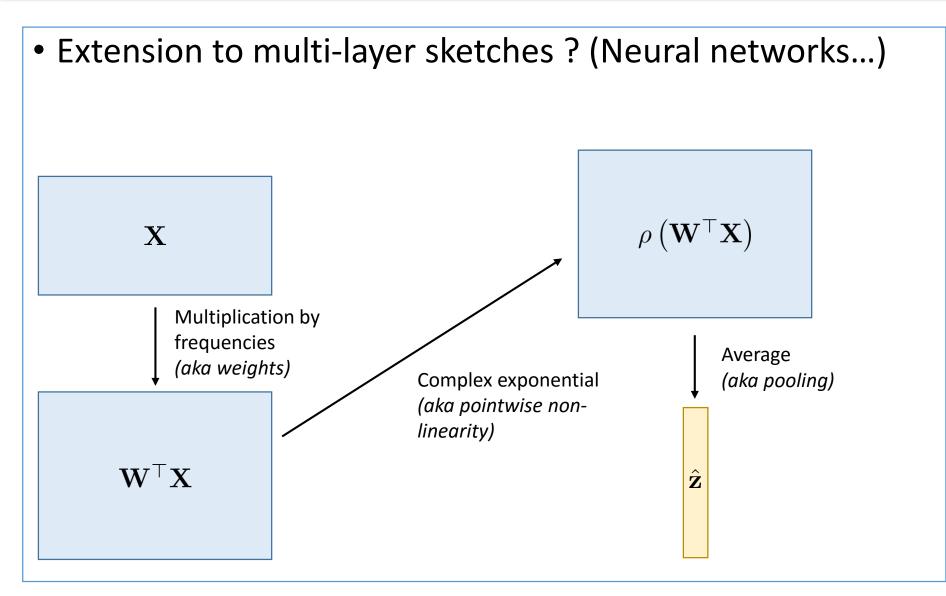
- Combine with **dimension reduction** for **HD** data?
 - First map in low-d, then sketch



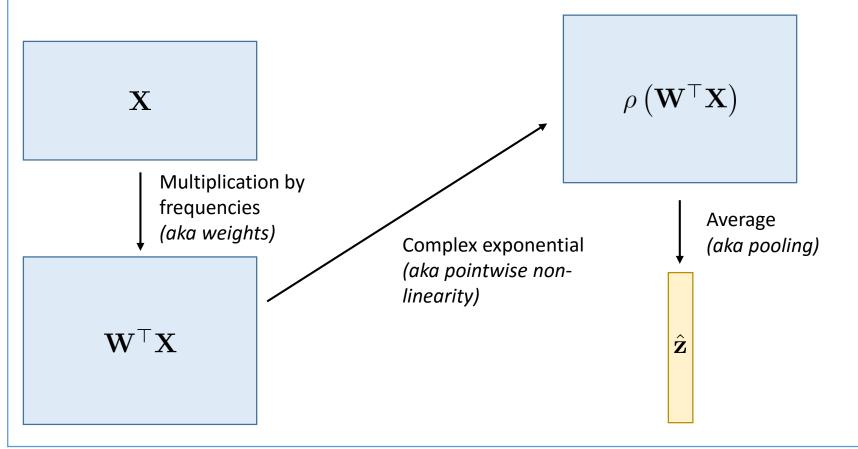
- Extend framework to other tasks?
 - « Sketchify » other kernel methods?

$$\mathsf{K}(\mathbf{\underline{\mathsf{M}}},\mathbf{\underline{\mathsf{M}}}) \approx \mathsf{Z}(\mathbf{\underline{\mathsf{M}}})^{\mathsf{T}}\mathsf{Z}(\mathbf{\underline{\mathsf{M}}})$$

Oliva2016



- Extension to multi-layer sketches ? (Neural networks...)
 - Equivalence between LRIP and instance optimality still valid for non-linear operators !



Thank you !

Nicolas Keriven

