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d'| x5 SR 18 See eg ¢ [Cormode 2011]
[Feldman 2010]
ml| |z
Dimensionality reduction d| - fnt [Distributed,}
See eg [Calderbank 2009, streaming
Boutsidis 2010] !
- Random Projection - Uniform sampling (naive) || . pash tables, histograms
- Feature selection - Adaptive sampling... - Sketching for learning ?
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[ Practical illustration: sketched Gaussian Mixture Model estimation with Id cov. [Bourrier 2013]]
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Isotropic GMM estimation [Bourrier 2013]

[ Practical illustration: sketched Gaussian Mixture Model estimation with Id cov. [Bourrier 2013] ]

Random Fouri Modified Iterative
andaom Fourier moments f107t1715ﬂ85h6ﬂ0”n£] ngb = (:)
Data ° > > Q)
O
6 4 2 0 2 4 6 SketCh S k 4 2 0 2 4 6
Lyy.eey Ty G]Rd E:Lzlu”AfU“:I)
Observation: necessarily... ... hence:
Any linear sketch = empirical moments Sketch learning = moment matching
5= Bo(X)|= 23 &(x;) [ ming ||z — Eg@(X)| ]
n 1 T
o : R —» C™ True moments (param. () )

Good empirical properties of the « sketching » function

- « Sufficient » dimension 7720 (size of the sketch)
- Randomly designed
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» Generalize to other mixture models? New algorithm?
» Theoretical guarantees?

Contributions of this thesis

» Algorithmic: heuristic greedy algorithm for any sketched mixture model
estimation
* General GMM estimation
e Sketched k-means
* Mixture of multivariate elliptic «:-stable distributions estimation

» Theoretical: Information-preservation guarantees
* Recovery conditions for generic models
e Additional focus on mixture models
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Sketched mixture model estimation

Moment

ﬁ matching @ ®

=Ed(X

Goal Method: moment matching

- Estimate mixture model:
Written as

k
[xi ~ lel leQJ

. A k
w >0, SY,w =1 [ g, ,w |z — lel wi f(61)]]2 J

from sketch 7 = E® (X) where
£(8) = Ex o, ®(X)
Ex: TTp = N(M, E)
* Non-convex minimization

» Convex relaxation? (super-resolution)
* Proposed approach: greedy heuristic
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In experiments:
& : Random Fourier sampling [Bourrier 2013] (with new distribution of frequencies)

Model such that: 779 has a closed-form characteristic function
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GMM diagonal cov.
(@)
@

Sketched mixture model estimation

[ Available at sketchml.gforge.inria.fr ]

mg = N (1, diag(o))
0= (u,o) € R?

Classic approach on full data

Algorithm : EM
[Dempster 1977]

(VLFeat’s gmm)
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GMM diagonal cov. Mixture of Diracs
O g
@)
()
Sketched mixture model estimation
[ Available at sketchml.gforge.inria.fr ]
. — d
7o = N (u, diag(c)) mo =06 0€R
. 2d (clustered distribution = noisy
0 = (/J ’ U) R mixture of Diracs)
Classic approach on full data
Algorithm : EM Algorithm : k-means
[Dempster 1977] [Lloyd 1982]
(VLFeat’s gmm) (Matlab’s kmeans)
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GMM diagonal cov. Mixture of Diracs Mixture of stable dist.
@ @
@ S
Sketched mixture model estimation
[ Available at sketchml.gforge.inria.fr ]
: _ d _ -
7o = N (1, diag(o)) T =09 6HcR o = Sa(p, diag(o))
. 2d (clustered distribution = noisy . 2d+1
0=(n,0) €R mixture of Diracs) 0= (n,0,0) €R
Classic approach on full data
Algorithm : EM Algorithm : k-means None!
Dl piiier 4807 e A2 1-D method with MCMC: can

(VLFeat’s gmm) (Matlab’s kmeans) be very long...



Large-scale evaluation on synthetic data

GMM:d=10,k=5, m=500 GMM: d =10, k=20, m=2000
101 ‘ I
@-CL-OMPR -CL-OMPR|]
<©-EM1 O-EM1
100+ e EM10 EM10
> 107" 2
3 3
2' o 2' 0@ 6---6..,,0‘_..0....9
[ o ‘
103 ;
107 ‘ ‘ 10 ‘ ‘
102 10* 108 102 10* 108
n n
Size of database Size of database
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Large-scale evaluation on synthetic data

GMM:d=10,k=5, m=500 GMM: d =10, k=20, m=2000

101 ) —
@-CL-OMPR -CL-OMPR|]
9 EM1 -EM1 j
100" e EM10 EM10 |
210 =
< < 1
zl 10-2 2' ()'"'6--‘6 6.'%0,..-0'"'?)
[ o ‘
1073 ;

10 | ‘ 1073 | |

102 10% 10° 102 10* 10°
n n
Size of database Size of database

* Does not need replicates (despite some randomness in CL-OMPR)
 Comparatively better on large databases (despite fixed sketch size)
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Large-scale evaluation on synthetic data

k-means: d =10, k =10

12 > ©n=10"_
| 7 n=10°
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10@ - 7/l
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L0, TR
W a e
6] e \ i
28 ° '\
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S 6- N i
4y}
error = @'"u.\v
n'd 0.~ o
4- T W |
Q..3.,
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Large-scale evaluation on synthetic data

k-means: d =10, k =10

| o and
12 > ©n=10"_
| 7 n=10°
n=10°
106 - 7
V. n=10
L0, TR
TP
6] e \ i
28 ° '\
. N\
Relative & A R
S 6- N i
4y}
error = @'"u.\v
n'd 0.~ o
4- T W |
©..3.
T
..8.':.:1.\w
2 U -
_____________________ glt.ﬂy:"'_'\:&"-_--h ey w0}
0 | |
10" 102 10°
m

Size of sketch

* Size of sketch m independent of size of data n
* Intuitively: dependent on complexity of the problem &, d ...
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Alpha stable on synthetic data: toy example

max radius = 2.9e+08

-6 -4 22 0 2 B 6

—a, =068 —a,=19 _a,=12 (d=10, k=3)

Very heavy tailed... Toy exam ple

* CL-OMPR able to precisely estimate all parameters

(102 precision in approx. 80 sec)
(reported result for 1D approaches with MCMC: 10 precision in 1.5 hours)
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Classic method for speaker verification
[Reynolds 2000] (for proof of concept) NIST

2005 database, MFCCs.

GMM (d=12, k=64, m=10000)

Results (EER, lower is better)
* EM on 300000 MFCCs: 29.53

e Sketch on 200 millions MFCCs: 28.96
(120 000-fold compression)
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Classic method for speaker verification
[Reynolds 2000] (for proof of concept) NIST

2005 database, MFCCs.

GMM (d=12, k=64, m=10000)

Results (EER, lower is better)

* EM on 300000 MFCCs: 29.53

e Sketch on 200 millions MFCCs: 28.96
(120 000-fold compression)

0.95/

0.85

Adjusted Rand Index

0.7

12/10/2017 Nicolas Keriven

0.9

0.8

Spectral clustering for classification [uw 2001],
augmented MNIST database [Loosli 2007].

k-means (d=10, k=10, m=1000)

n =70 000
T ][]
[

[
: -
[
[
- T T
[
[
[
[
L
1
[
I —kmeans
L —CL-OMPR
1 rep. 5 rep.

0.95

0.9

0.85

0.8

0.75

0.7

n =1 000 000

- L
1

|

1

|

1

1

1

J- L ]

1rep 5 rep.
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How big a sketch ?

m/(kd) mi(kd) m/(kd) m/(kd)

Relative sketch size m/(kd) Relative sketch size

Stable dlstrlbutlons

<-1.8
—
30
25
15
20
o x
1> 10
10
5
5

10 10"

-1.5 -1

Sufficient sketch size

m ~ O(kd)

Can we characterize that?

m/(kd)

Relative sketch size

12/10/2017 Nicolas Keriven 14/28



WEBNOOF)

Sketched Mixture Model Estimation

A flexible greedy algorithm

Experiments

Information-preservation guarantees

Generic analysis

Statistical Learning with sketches of limited size

Conclusion

15/28



Linear inverse problem

7 = E®(X)

16/28



Linear inverse problem

Assumption on the data

- True distribution: [3;17 ey T, s W*J

12/10/2017 Nicolas Keriven 16/28



Linear inverse problem

Assumption on the data

- True distribution: [3;17 ey T, s W*J

Reformulation of the sketching

12/10/2017 Nicolas Keriven 16/28



Linear inverse problem

Assumption on the data

- True distribution: [3;17 ey T, s W*J

Reformulation of the sketching

- Linear operator:

A = Ex on®(X)

12/10/2017 Nicolas Keriven 16/28



Linear inverse problem
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| 2=An* +é |

Noise & = E®(X) — E,«®(X)
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Linear inverse problem

Assumption on the data

True distribution: [3;17 ey T, s W*J

Reformulation of the sketching

Linear operator:

A = Ex on®(X)

e Data = distribution

« Noisy » linear measurement:

» Sketch = noisy linear measurement of [ z=Arn* + e ]
the distribution (non-linear in data)

Noise & = E®(X) — E,«®(X)

* Estimation problem = linear inverse
small by Law of Large Numbers

problem
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Information preservation guarantees

P S : Model set of « simple » D
distributions (eg. GMMs)

—
<

A(z) € argmingee ||z — Aol

Cost function used in practice (Part 1) !

Cm

=

Goal Lower Restricted Isometry Property

Prove the existence of a decoder /\ robust / /
to noise and stable to modeling error. ”U — 0 H S) H‘AO_ — Ao HQ

« Instance-optimal » decoder

New goal: find/construct models (5 and operators A that satisfy the LRIP (w.h.p.)
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Main result

Main hypothesis

The normalized secant set S(&) has finite covering numbers.

Result

For [m > (C' x log(cov. num.)],
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W.h.p.
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[ Quality of pointwise LRIP ] [ Dimensionality of the model ]

W.h.p.

[ Modeling error ]

In* — A@)|| < d(x* &) + O(1/v/m)

- Classic CS: finite dimension: Known Under simplified hypothesis:
- Here: infinite dimension: Technical mn
(applied to mixture of stable dist.)
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on the data)

- M- bounded domain for centroids
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- Adjusted Fourier features (for technical

reasons)

Result

- W.r.t. k-means usual cost (SSE)

GMM with known covariance

Hypotheses
- Sufficiently separated means
- Bounded domain for means

Sketch
- Fourier features

Result
- With respect to log-likelihood

Sketch size

m > O (k*d?polylog(k,d)log(M/e))

Sketch size

m > O(k*d*polylog(k,d)y(sep.))

21/28




GMM trade-off

@\ £ , Trade-off
P —=

Separation of means Size of sketch
Separation of means Number of measurements
M
High O (VdTogk) m > O (k2d? - polylog(k, d))
Freq. O (vd+Tlogk) m > O (k3d? - polylog(k,d))
O (VIogk) m > O (k*d?e® - polylog(k,d))
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Sketch learning

e Sketching method for large-scale density estimation
* Well-adapted to distributed or streaming context
* Focus on mixture models
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Practical illustration: flexible greedy algorithm for any sketched

mixture model estimation
* GMM with diagonal covariance
* k-means (mixture of Diracs)
* Mixture of multivariate elliptic stable distributions

Validation on real and synthetic data

Information-preservation guarantees for sketched density

estimation

* Infinite dimensional Compressive Sensing (Restricted isometry property)

* Kernel methods on distributions (Kernel mean, Random features)
Generic assumptions of low-dimensionality of the model set
Focus on mixture models

e Estimator of mixture of multivariate elliptic stable distributions

e Statistical learning with controlled sketch size for k-means, sketched GMM
with known covariance

25/28
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Outlooks : beyond sketches

e Combine with dimension reduction for HD data?
* First map in low-d, then sketch

Eg.

[Boutsidis 2010] iy

, Our guarantees
Tr1To Coe Ln > X4 To ... X >

Y/

n

e Extend framework to other tasks?
» « Sketchify » other kernel methods?

K( ; H) =~ Z( »&)

Oliva2016
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Outlooks : beyond sketches

* Extension to multi-layer sketches ? (Neural networks...)

e Equivalence between LRIP and instance optimality still valid for non-linear
operators !

X p(W'X)

Multiplication by
frequencies

) Average
(aka weights) Complex exponential (aka pooling)
(aka pointwise non-
linearity)

W'X

N>
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Thank you !

12/10/2017 Nicolas Keriven 28/28



