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Data Stream

……

- Clustering

- Classification

- etc…

Context: machine learning
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Automatic task

= cat

Small intermediate
representation

Distributed database

Large database

Idea!       

Desired properties
- Fast to compute (distributed, streaming, GPU…)
- Preserve desired information
- Preserve data privacy

Slow, costly
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Linear sketch
See [Thaper 2002]
[Cormode 2011]

- Hash tables, histograms
- Sketching for learning ?
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coresets
See eg
[Feldman 2010]
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Random Fourier moments
Modified Iterative
Hard Thresholding

Sketch

Practical illustration: sketched Gaussian Mixture Model estimation with Id cov. [Bourrier 2013]

Data
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Observation: necessarily…

Any linear sketch = empirical moments

… hence:

Sketch learning = moment matching

True moments (param.    )

Good empirical properties of the « sketching » function

- « Sufficient » dimension         (size of the sketch)

- Randomly designed
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Questions

 Generalize to other mixture models? New algorithm?
 Theoretical guarantees?

Contributions of this thesis

 Algorithmic: heuristic greedy algorithm for any sketched mixture model 
estimation
• General GMM estimation
• Sketched k-means
• Mixture of multivariate elliptic -stable distributions estimation

 Theoretical: Information-preservation guarantees
• Recovery conditions for generic models
• Additional focus on mixture models
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Ex:

Sketched mixture model estimation
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• Non-convex minimization
• Convex relaxation? (super-resolution)
• Proposed approach: greedy heuristic

Goal Method: moment matching

where

Moment
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Algorithm: Compressive Learning OMPR (CL-OMPR)
Continuous (off-the-grid) adaptation of Orthogonal Matching Pursuit with Replacement

[Jain 2011]

Can be applied if:                                         has a closed-form, differentiable expression 

In experiments:
: Random Fourier sampling [Bourrier 2013] (with new distribution of frequencies)

Model such that:        has a closed-form characteristic function
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Classic approach on full data
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[Dempster 1977]

(VLFeat’s gmm)
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Available at sketchml.gforge.inria.fr
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Classic approach on full data

Models

Mixture of Diracs

Algorithm : k-means
[Lloyd 1982]

(Matlab’s kmeans)

(clustered distribution = noisy
mixture of Diracs)

Mixture of stable dist.

None!

GMM diagonal cov.

Algorithm : EM 
[Dempster 1977]

(VLFeat’s gmm)

Sketched mixture model estimation

Available at sketchml.gforge.inria.fr

1-D method with MCMC: can
be very long…
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GMM: d = 10, k = 5, m = 500

• Does not need replicates (despite some randomness in CL-OMPR)

• Comparatively better on large databases (despite fixed sketch size)

GMM: d = 10, k = 20, m = 2000
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Large-scale evaluation on synthetic data

Nicolas Keriven12/10/2017

• Size of sketch       independent of size of data
• Intuitively: dependent on complexity of the problem …

Size of sketch

Relative
error

k-means: d = 10, k = 10
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Toy example

• CL-OMPR able to precisely estimate all parameters
(10-2 precision in approx. 80 sec)

(reported result for 1D approaches with MCMC: 10-1 precision in 1.5 hours)

Alpha stable on synthetic data: toy example
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(d=10, k=3)

Very heavy tailed…

12/28



Application on real data

• Efficient at large scales even on real data?

Nicolas Keriven12/10/2017 13/28



Application on real data

• Efficient at large scales even on real data?

Classic method for speaker verification
[Reynolds 2000]  (for proof of concept) NIST 

2005 database, MFCCs.

Results (EER, lower is better)

• EM on 300 000 MFCCs: 29.53

• Sketch on 200 millions MFCCs: 28.96

(120 000-fold compression)

GMM (d=12, k=64, m=10000)

Nicolas Keriven12/10/2017 13/28



Application on real data

• Efficient at large scales even on real data?

Spectral clustering for classification [Uw 2001], 

augmented MNIST database [Loosli 2007].

k-means (d=10, k=10, m=1000)

Classic method for speaker verification
[Reynolds 2000]  (for proof of concept) NIST 

2005 database, MFCCs.

Results (EER, lower is better)

• EM on 300 000 MFCCs: 29.53

• Sketch on 200 millions MFCCs: 28.96

(120 000-fold compression)

GMM (d=12, k=64, m=10000)
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Stable distributions
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Relative sketch size m/(kd) Relative sketch size

Relative sketch size
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Linear inverse problem
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Assumption on the data

Reformulation of the sketching

• Data = distribution

• Sketch = noisy linear measurement of 
the distribution (non-linear in data)

• Estimation problem = linear inverse 
problem
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: Model set of « simple » 
distributions (eg. GMMs)

Information preservation guarantees
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New goal: find/construct models and operators that satisfy the LRIP (w.h.p.)

Cost function used in practice (Part 1) !

Goal
Prove the existence of a decoder robust
to noise and stable to modeling error. 

Lower Restricted Isometry Property

« Instance-optimal » decoder
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Main hypothesis

The normalized secant set    has finite covering numbers.

Quality of pointwise LRIP Dimensionality of the model

Modeling error

- Classic CS: finite dimension: Known
- Here: infinite dimension: Technical

Under simplified hypothesis:

(applied to mixture of stable dist.)
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A flexible greedy algorithm

Experiments

Information-preservation guarantees

Main analysis and first results

Statistical Learning with sketches of limited size

Conclusion
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Sketch learning

Nicolas Keriven12/10/2017

• Sketching method for large-scale density estimation
• Well-adapted to distributed or streaming context
• Focus on mixture models
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• Information-preservation guarantees for sketched density 
estimation
• Infinite dimensional Compressive Sensing (Restricted isometry property)

• Kernel methods on distributions (Kernel mean, Random features)

• Generic assumptions of low-dimensionality of the model set
• Focus on mixture models

• Estimator of mixture of multivariate elliptic stable distributions
• Statistical learning with controlled sketch size for k-means, sketched GMM 

with known covariance

• Practical illustration: flexible greedy algorithm for any sketched
mixture model estimation
• GMM with diagonal covariance
• k-means (mixture of Diracs)
• Mixture of multivariate elliptic stable distributions

• Validation on real and synthetic data
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Outlooks : sketch

• Obtain algorithmic guarantees?
• Similar algorithms can be found in e.g. super-resolution with 

other interpretations (Frank-Wolfe, conditional gradient…)  [eg Bredies 
2012…]

• Convergence guarantees as                 , no guarantees for 
exactly    -sparse measures…

• Bridge observed gap between theory and practice ?
• Does not come from coverings numbers

• Improve pointwise concentration?

• Recent result:
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Outlooks : beyond sketches

• Combine with dimension reduction for HD data?
• First map in low-d, then sketch

• Extend framework to other tasks?
• « Sketchify » other kernel methods?

Nicolas Keriven

.   .   . .   .   .

Eg.
[Boutsidis 2010] Our guarantees

27/2812/10/2017
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Outlooks : beyond sketches

• Extension to multi-layer sketches ? (Neural networks…)
• Equivalence between LRIP and instance optimality still valid for non-linear 

operators !
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Multiplication by 
frequencies
(aka weights)

Average
(aka pooling)Complex exponential

(aka pointwise non-
linearity)



Thank you !
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