A short introduction to graphons

Nicolas Keriven

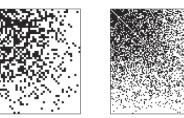
CNRS, Gipsa-lab

Based on the textbook "Large networks and graph limits" (L. Lovasz, 2012)

" Large graph limits "

" Large graph limits "

- Notion of **convergence**
 - Which sense ?
 - Towards what ?
 - Which "metric" ?



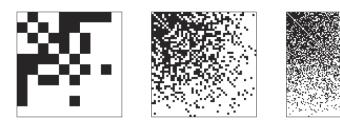
" Large graph limits "

- Notion of **convergence**
 - Which sense ?
 - Towards what ?
 - Which "metric" ?

• How to "lift" graphs of different sizes to analyze them in the same space ?

" Large graph limits "

- Notion of **convergence**
 - Which sense ?
 - Towards what ?
 - Which "metric" ?

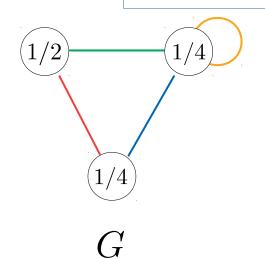


• How to "lift" graphs of different sizes to analyze them in the same space ? Def Graphon ("graph-function"): $W: [0,1]^2 \to [0,1]$ symmetric

" Large graph limits "

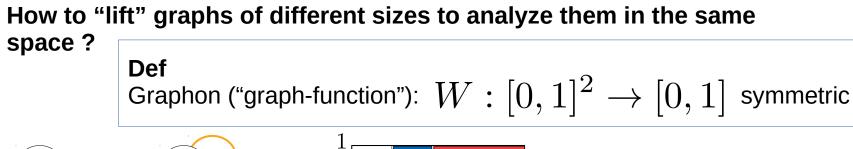
- Notion of **convergence**
 - Which sense ?
 - Towards what ?
 - Which "metric" ?

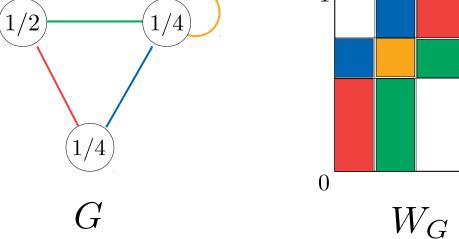
• How to "lift" graphs of different sizes to analyze them in the same space ? Def Graphon ("graph-function"): $W: [0,1]^2 \to [0,1]$ symmetric



" Large graph limits "

- Notion of convergence
 - Which sense ?
 - Towards what ?
 - Which "metric" ?





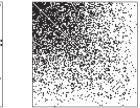
•

" Large graph limits "

- Notion of **convergence** •
 - Which sense?
 - Towards what ? ٠
 - Which "metric"?

1/4

G



How to "lift" graphs of different sizes to analyze them in the same • space ? Def Graphon ("graph-function"): $W: [0,1]^2 \rightarrow [0,1]$ symmetric 1/4More nodes = more subdivision of

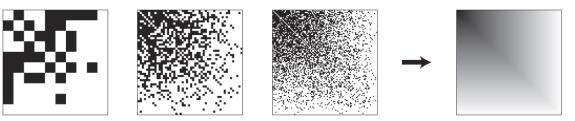
0 W_G space !

" Large graph limits "

- Notion of **convergence**
 - Which sense ?
 - Towards what ?
 - Which "metric" ?

1/4

G



• How to "lift" graphs of different sizes to analyze them in the same space ? Def Graphon ("graph-function"): $W : [0, 1]^2 \rightarrow [0, 1]$ symmetric 1/2 1/4 1

 W_G

0

- Graph theory
 - Extremal graph theory
 - Properties of large random graphs

- Graph theory
 - Extremal graph theory
 - Properties of large random graphs
- · Analysis vs other
 - Link between combinatorial, probabilistic, and analytical objects/problems

- Graph theory
 - Extremal graph theory
 - Properties of large random graphs
- · Analysis vs other
 - Link between combinatorial, probabilistic, and analytical objects/problems
- Random Matrix theory? [Zhu 2019 "A graphon approach to limiting spectral distributions of Wigner-type matrices]

- Graph theory
 - Extremal graph theory
 - Properties of large random graphs
- Analysis vs other
 - Link between combinatorial, probabilistic, and analytical objects/problems
- Random Matrix theory? [Zhu 2019 "A graphon approach to limiting spectral distributions of Wigner-type matrices]
- For statisticians / Machine learner (not much)

• For pure mathematicians:

- Graph theory
 - Extremal graph theory
 - Properties of large random graphs
- Analysis vs other
 - Link between combinatorial, probabilistic, and analytical objects/problems
- Random Matrix theory? [Zhu 2019 "A graphon approach to limiting spectral distributions of Wigner-type matrices]
- For statisticians / Machine learner (not much)
 - Flexible model of random graphs
 - Identifiability, sufficient statistics, parameter estimation, property testing...

• For pure mathematicians:

- Graph theory
 - Extremal graph theory
 - Properties of large random graphs
- Analysis vs other
 - Link between combinatorial, probabilistic, and analytical objects/problems
- Random Matrix theory? [Zhu 2019 "A graphon approach to limiting spectral distributions of Wigner-type matrices]
- For statisticians / Machine learner (not much)
 - Flexible model of random graphs
 - Identifiability, sufficient statistics, parameter estimation, property testing...
 - Clustering / semi-supervised learning
 - Unify SBM, similarity kernel models, other...

• For pure mathematicians:

- Graph theory
 - Extremal graph theory
 - Properties of large random graphs
- Analysis vs other
 - Link between combinatorial, probabilistic, and analytical objects/problems
- Random Matrix theory? [Zhu 2019 "A graphon approach to limiting spectral distributions of Wigner-type matrices]
- For statisticians / Machine learner (not much)
 - Flexible model of random graphs
 - Identifiability, sufficient statistics, parameter estimation, property testing...
 - · Clustering / semi-supervised learning
 - Unify SBM, similarity kernel models, other...
- For anywhere with large graphs! (?)
 - Statistical physics
 - Network analysis...
 - [review "Graphons: A Nonparametric Method to Model, Estimate, and Design Algorithms for Massive Networks" Borgs and Chayes]

• For pure mathematicians:

- Graph theory
 - Extremal graph theory
 - Properties of large random graphs
- Analysis vs other
 - Link between combinatorial, probabilistic, and analytical objects/problems
- Random Matrix theory? [Zhu 2019 "A graphon approach to limiting spectral distributions of Wigner-type matrices]
- For statisticians / Machine learner (not much)
 - Flexible model of random graphs
 - Identifiability, sufficient statistics, parameter estimation, property testing...
 - Clustering / semi-supervised learning
 - Unify SBM, similarity kernel models, other...
- For anywhere with large graphs! (?)
 - Statistical physics
 - Network analysis...

- Mostly **theoretical**, but a good generative model for applications
- The basic theory is only "satisfying" for **dense graphs**
- [review "Graphons: A Nonparametric Method to Model, Estimate, and Design Algorithms for Massive Networks" Borgs and Chayes]

- Random graphs
 - Easiest to define
 - Generalization of several other models
 - Most useful for applied mathematicians (concentration inequalities...)

- Random graphs
 - Easiest to define
 - Generalization of several other models
 - Most useful for applied mathematicians (concentration inequalities...)
- Convergence of parameters (subgraphs density)
 - Related to subgraph sampling
 - Easy to define, more difficult to analyze

- Random graphs
 - Easiest to define
 - Generalization of several other models
 - Most useful for applied mathematicians (concentration inequalities...)
- Convergence of parameters (subgraphs density)
 - Related to subgraph sampling
 - Easy to define, more difficult to analyze
- Cut-norm convergence
 - "True" appropriate mathematical notion
 - What really connects several mathematical fields
 - Mathematically "advanced"!

$W: [0,1]^2 \rightarrow [0,1]$ symmetric measurable

$$G_n \sim P_W$$
 if: $x_i \sim \mathcal{U}([0,1]) \quad a_{ij} \sim \operatorname{Ber}(W(x_i,x_j))$

$W: [0,1]^2 \rightarrow [0,1]$ symmetric measurable

$$G_n \sim P_W$$
 if: $x_i \sim \mathcal{U}([0,1])$ $a_{ij} \sim \text{Ber}(W(x_i,x_j))$

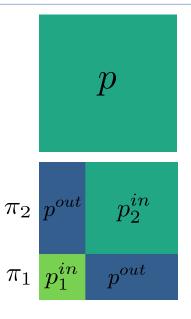
• Erdös-Rényi: constant

$W: [0,1]^2 \rightarrow [0,1]$ symmetric measurable

$$G_n \sim P_W$$
 if: $x_i \sim \mathcal{U}([0,1])$ $a_{ij} \sim \text{Ber}(W(x_i,x_j))$

• Erdös-Rényi: constant

• Stochastic Block Model: piecewise constant



$W: [0,1]^2 \rightarrow [0,1]$ symmetric measurable

$$G_n \sim P_W$$
 if: $x_i \sim \mathcal{U}([0,1])$ $a_{ij} \sim \text{Ber}(W(x_i,x_j))$

p

• Erdös-Rényi: constant

• Stochastic Block Model: piecewise constant

$$\pi_2 \begin{array}{c} p^{out} \end{array} \begin{array}{c} p_2^{in} \end{array} \\ \pi_1 \end{array} \begin{array}{c} p_1^{in} \end{array} \begin{array}{c} p^{out} \end{array}$$

• Similarity kernel (used in ML) ex: $W(x,y) = e^{-\frac{\|x-y\|^2}{2\sigma^2}}$

$W: [0,1]^2 \rightarrow [0,1]$ symmetric measurable

$$G_n \sim P_W$$
 if: $x_i \sim \mathcal{U}([0,1])$ $a_{ij} \sim \text{Ber}(W(x_i,x_j))$

Erdös-Rényi: constant

 Stochastic Block Model: piecewise constant

• Similarity kernel (used in ML)
ex:
$$W(x,y) = e^{-\frac{\|x-y\|^2}{2\sigma^2}}$$

$$p$$

 π_2 p^{out} p^{in}_2
 π_1 p^{in}_1 p^{out}

Could replace:

gipsa-lab

ex:

$W: [0,1]^2 \rightarrow [0,1]$ symmetric measurable

$$G_n \sim P_W$$
 if: $x_i \sim \mathcal{U}([0,1])$ $a_{ij} \sim \text{Ber}(W(x_i,x_j))$

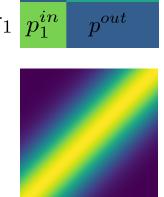
 \mathcal{D}

• Erdös-Rényi: constant

• Stochastic Block Model: piecewise constant

$$\pi_2 \begin{array}{c} p^{out} & p_2^{in} \\ \pi_1 & p_1^{in} & p^{out} \end{array}$$

- Similarity kernel (used in ML) ex: $W(x,y) = e^{-\frac{\|x-y\|^2}{2\sigma^2}}$



Could replace:

$$ullet [0,1]$$
 by \mathbb{R}^d or \mathbb{S}^d

$W: [0,1]^2 \rightarrow [0,1]$ symmetric measurable

$$G_n \sim P_W$$
 if: $x_i \sim \mathcal{U}([0,1])$ $a_{ij} \sim \text{Ber}(W(x_i,x_j))$

 \mathcal{D}

Could replace:

•

• [0,1] by \mathbb{R}^d or \mathbb{S}^d

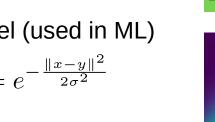
Uniform distrib.

• Erdös-Rényi: constant

• Stochastic Block Model: piecewise constant

$$\pi_2 \begin{array}{c} p^{out} \\ p_2^{in} \end{array} \begin{array}{c} p^{out} \\ p_2^{out} \end{array}$$

- Similarity kernel (used in ML) ex: $W(x,y) = e^{-\frac{\|x-y\|^2}{2\sigma^2}}$



$W: [0,1]^2 \rightarrow [0,1]$ symmetric measurable

$$G_n \sim P_W$$
 if: $x_i \sim \mathcal{U}([0,1])$ $a_{ij} \sim \text{Ber}(W(x_i,x_j))$

 \mathcal{D}

• Erdös-Rényi: constant

• Stochastic Block Model: piecewise constant

$$\pi_2 \left[p^{out} \right] p^{in} p^{in}_2$$

- Similarity kernel (used in ML) ex: $W(x,y) = e^{-\frac{\|x-y\|^2}{2\sigma^2}}$
- $p_1^{in} p^{out}$

Could replace:

- ullet [0,1] by $\ensuremath{\mathbb{R}}^d$ or $\ensuremath{\mathbb{S}}^d$
- Uniform distrib.
- Bernoulli distrib.

$W: [0,1]^2 \rightarrow [0,1]$ symmetric measurable

$$G_n \sim P_W$$
 if: $x_i \sim \mathcal{U}([0,1])$ $a_{ij} \sim \text{Ber}(W(x_i,x_j))$

p

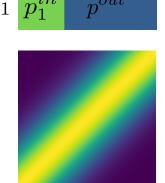
• Erdös-Rényi: constant

• Stochastic Block Model: piecewise constant

$$\pi_2 p^{out} p_2^{in}$$

 $\pi_1 p_1^{in} p^{out}$

- Similarity kernel (used in ML) ex: $W(x,y) = e^{-\frac{\|x-y\|^2}{2\sigma^2}}$



Could replace:

- ullet [0,1] by $\ensuremath{\mathbb{R}}^d$ or $\ensuremath{\mathbb{S}}^d$
- Uniform distrib.
- Bernoulli distrib.

More interpretable, but often does not change "basic" mathematical properties

Basic property: concentration (thm 10.3)

Basic property: concentration (thm 10.3)

Assume $|f(G) - f(G')| \leq 1$

when only edges arriving at one node differ

Basic property: concentration (thm 10.3)

Assume $|f(G) - f(G')| \le 1$

when only edges arriving at one $\mathbb{P}(|f(0)|)$

$$\mathbb{P}(|f(G_n) - \mathbb{E}f(G_n)| \ge \sqrt{2tn}) \le 2e^{-t}$$

Basic property: concentration (thm 10.3)

Assume $|f(G) - f(G')| \leq 1$

when only edges arriving at one node differ

$$\mathbb{P}(|f(G_n) - \mathbb{E}f(G_n)| \ge \sqrt{2tn}) \le 2e^{-t}$$

• Example of application: [review "Graphons: A Nonparametric Method to Model, Estimate, and Design Algorithms for Massive Networks" Borgs and Chayes]

Basic property: concentration (thm 10.3)

Assume $|f(G) - f(G')| \leq 1$

$$\mathbb{P}(|f(G_n) - \mathbb{E}f(G_n)| \ge \sqrt{2tn}) \le 2e^{-t}$$

- Example of application: [review "Graphons: A Nonparametric Method to Model, Estimate, and Design Algorithms for Massive Networks" Borgs and Chayes]
- Graphon "estimation" [Klopp, Tsybakov, De Castro, Verzelen...]

Basic property: concentration (thm 10.3)

Assume $|f(G) - f(G')| \le 1$

$$\mathbb{P}(|f(G_n) - \mathbb{E}f(G_n)| \ge \sqrt{2tn}) \le 2e^{-t}$$

- Example of application: [review "Graphons: A Nonparametric Method to Model, Estimate, and Design Algorithms for Massive Networks" Borgs and Chayes]
- Graphon "estimation" [Klopp, Tsybakov, De Castro, Verzelen...]
 - Estimate the connectivity model W (parametric, non-parametric)

Basic property: concentration (thm 10.3)

Assume $|f(G) - f(G')| \le 1$

 $\mathbb{P}(|f(G_n) - \mathbb{E}f(G_n)| \ge \sqrt{2tn}) \le 2e^{-t}$

- Example of application: [review "Graphons: A Nonparametric Method to Model, Estimate, and Design Algorithms for Massive Networks" Borgs and Chayes]
- Graphon "estimation" [Klopp, Tsybakov, De Castro, Verzelen...]
 - Estimate the connectivity model W (parametric, non-parametric)
 - Estimate the connectivity matrix $\mathbb{E}A$ (often by block)

Basic property: concentration (thm 10.3)

Assume $|f(G) - f(G')| \le 1$

 $\mathbb{P}(|f(G_n) - \mathbb{E}f(G_n)| \ge \sqrt{2tn}) \le 2e^{-t}$

- Example of application: [review "Graphons: A Nonparametric Method to Model, Estimate, and Design Algorithms for Massive Networks" Borgs and Chayes]
- Graphon "estimation" [Klopp, Tsybakov, De Castro, Verzelen...]
 - Estimate the connectivity model W (parametric, non-parametric)
 - Estimate the connectivity matrix $\mathbb{E}A$ (often by block)
 - Application to (generalized) clustering, missing link estimation...

Basic property: concentration (thm 10.3)

Assume $|f(G) - f(G')| \le 1$

 $\mathbb{P}(|f(G_n) - \mathbb{E}f(G_n)| \ge \sqrt{2tn}) \le 2e^{-t}$

when only edges arriving at one node differ

- Example of application: [review "Graphons: A Nonparametric Method to Model, Estimate, and Design Algorithms for Massive Networks" Borgs and Chayes]
- Graphon "estimation" [Klopp, Tsybakov, De Castro, Verzelen...]
 - Estimate the connectivity model W (parametric, non-parametric)
 - Estimate the connectivity matrix $\mathbb{E}A$ (often by block)
 - Application to (generalized) clustering, missing link estimation...
- Generative model for other tasks

Basic property: concentration (thm 10.3)

Assume $|f(G) - f(G')| \le 1$

 $\mathbb{P}(|f(G_n) - \mathbb{E}f(G_n)| \ge \sqrt{2tn}) \le 2e^{-t}$

when only edges arriving at one node differ

- Example of application: [review "Graphons: A Nonparametric Method to Model, Estimate, and Design Algorithms for Massive Networks" Borgs and Chayes]
- Graphon "estimation" [Klopp, Tsybakov, De Castro, Verzelen...]
 - Estimate the connectivity model W (parametric, non-parametric)
 - Estimate the connectivity matrix $\mathbb{E}A$ (often by block)
 - Application to (generalized) clustering, missing link estimation...
- Generative model for other tasks
 - Convergence of eigen-elements of the Laplacian [Diao et al. 2016]

Basic property: concentration (thm 10.3)

Assume $|f(G) - f(G')| \le 1$

 $\mathbb{P}(|f(G_n) - \mathbb{E}f(G_n)| \ge \sqrt{2tn}) \le 2e^{-t}$

when only edges arriving at one node differ

- Example of application: [review "Graphons: A Nonparametric Method to Model, Estimate, and Design Algorithms for Massive Networks" Borgs and Chayes]
- Graphon "estimation" [Klopp, Tsybakov, De Castro, Verzelen...]
 - Estimate the connectivity model W (parametric, non-parametric)
 - Estimate the connectivity matrix $\mathbb{E}A$ (often by block)
 - Application to (generalized) clustering, missing link estimation...
- Generative model for other tasks
 - Convergence of eigen-elements of the Laplacian [Diao et al. 2016]
 - To analyze algorithms in ML?
 - (in progress, w/ S. Vaiter and A. Bietti) Stability/generalization of Graph Neural Networks

Basic property: concentration (thm 10.3)

Assume $|f(G) - f(G')| \le 1$

 $\mathbb{P}(|f(G_n) - \mathbb{E}f(G_n)| \ge \sqrt{2tn}) \le 2e^{-t}$

when only edges arriving at one node differ

- Example of application: [review "Graphons: A Nonparametric Method to Model, Estimate, and Design Algorithms for Massive Networks" Borgs and Chayes]
- Graphon "estimation" [Klopp, Tsybakov, De Castro, Verzelen...]
 - Estimate the connectivity model W (parametric, non-parametric)
 - Estimate the connectivity matrix $\mathbb{E}A$ (often by block)
 - Application to (generalized) clustering, missing link estimation...
- Generative model for other tasks
 - Convergence of eigen-elements of the Laplacian [Diao et al. 2016]
 - To analyze algorithms in ML?
 - (in progress, w/S. Vaiter and A. Bietti) Stability/generalization of Graph Neural Networks

Extension to more general models (section 11.2)

Basic property: concentration (thm 10.3)

Assume $|f(G) - f(G')| \le 1$

 $\mathbb{P}(|f(G_n) - \mathbb{E}f(G_n)| \ge \sqrt{2tn}) \le 2e^{-t}$

when only edges arriving at one node differ

- Example of application: [review "Graphons: A Nonparametric Method to Model, Estimate, and Design Algorithms for Massive Networks" Borgs and Chayes]
- Graphon "estimation" [Klopp, Tsybakov, De Castro, Verzelen...]
 - Estimate the connectivity model W (parametric, non-parametric)
 - Estimate the connectivity matrix $\mathbb{E}A$ (often by block)
 - Application to (generalized) clustering, missing link estimation...
- Generative model for other tasks
 - Convergence of eigen-elements of the Laplacian [Diao et al. 2016]
 - To analyze algorithms in ML?
 - (in progress, w/S. Vaiter and A. Bietti) Stability/generalization of Graph Neural Networks

Extension to more general models (section 11.2)

• Hierarchical "exchangeable models" (pertains to invariance by permutation and nesting) [Bickel and Chen, Veitch, Roy, Orbanz...]

Subgraph density: probability of drawing a given subgraph

Subgraph density: probability of drawing a given subgraph

F with k nodes

 $S_k(G)$: sample subgraph with k independent nodes

Subgraph density: probability of drawing a given subgraph

$$t_{ind}(F,G) = \mathbb{P}(S_k(G) = F)$$

F with k nodes $S_k(G)$: sample subgraph with k independent nodes

Subgraph density: probability of drawing a given subgraph

$$t_{ind}(F,G) = \mathbb{P}(S_k(G) = F)$$

Notation in the book...

F with k nodes $S_k(G)$: sample subgraph with k independent nodes

Subgraph density: probability of drawing a given subgraph

$$t_{ind}(F,G) = \mathbb{P}(S_k(G) = F)$$

Notation in the book...

F with k nodes $S_k(G)$: sample subgraph with k independent nodes

$$\mathsf{Ex}: t_{ind}(\bigcirc, \checkmark) = 2/10$$

Subgraph density: probability of drawing a given subgraph F with k nodes $S_k(G)$: sample subgraph with kindependent nodes $t_{ind}(F,G) = \mathbb{P}(S_k(G) = F)$ $Ex: t_{ind}(f,G) = 2/10$

Subgraph density for graphons

$$t_{ind}(F,W) = \int_{[0,1]^k} \prod_{ij\in E_F} W(x_i, x_j) \prod_{ij\notin E_F} (1 - W(x_i, x_j)) dx_1 \dots dx_k$$

Subgraph density: probability of drawing a given subgraph $\begin{array}{c}
 If with k nodes \\
 S_k(G) : sample subgraph with k \\
 independent nodes
\end{array}$ $\begin{array}{c}
 tind(F,G) = \mathbb{P}(S_k(G) = F) \\
 Ex: t_{ind}(\bigcup, \bigcup) = 2/10
\end{array}$ Subgraph density for graphons $t_{ind}(F,W) = \int_{[0,1]^k} \prod_{ij \in E_F} W(x_i, x_j) \prod_{ij \notin E_F} (1 - W(x_i, x_j)) dx_1 \dots dx_k$

$$= \mathbb{E}_{G_n \sim P_W} t_{ind}(F, G_n)$$

Subgraph density: probability of drawing a given subgraph

$$t_{ind}(F,G) = \mathbb{P}(S_k(G) = F$$

Notation in the book...

 $S_k(G)$: sample subgraph with k independent nodes

F with k nodes

$$\mathsf{Ex}: t_{ind}(\mathbf{b}, \mathbf{a}) = 2/10$$

Subgraph density for graphons

$$t_{ind}(F,W) = \int_{[0,1]^k} \prod_{ij\in E_F} W(x_i,x_j) \prod_{ij\notin E_F} (1-W(x_i,x_j)) dx_1 \dots dx_k$$
$$= \mathbb{E}_{G_n \sim P_W} t_{ind}(F,G_n)$$

Thm (thms 9.23 + 11.3 + 11.5)

Subgraph density: probability of drawing a given subgraph

$$t_{ind}(F,G) = \mathbb{P}(S_k(G) = F$$

Notation in the book...

F with k nodes $S_k(G)$: sample subgraph with k independent nodes

$$\mathsf{Ex}: t_{ind}(\mathbf{b}, \mathbf{a}) = 2/10$$

Subgraph density for graphons

$$t_{ind}(F,W) = \int_{[0,1]^k} \prod_{ij\in E_F} W(x_i, x_j) \prod_{ij\notin E_F} (1 - W(x_i, x_j)) dx_1 \dots dx_k$$
$$= \mathbb{E}_{G_n \sim P_W} t_{ind}(F, G_n)$$

Thm (thms 9.23 + 11.3 + 11.5) $|G_n| \to \infty$

Subgraph density: probability of drawing a given subgraph

$$t_{ind}(F,G) = \mathbb{P}(S_k(G) = F$$

F with k nodes $S_k(G)$: sample subgraph with k independent nodes

$$\mathsf{Ex}: t_{ind}(\mathbf{b}, \mathbf{a}) = 2/10$$

Subgraph density for graphons

$$t_{ind}(F,W) = \int_{[0,1]^k} \prod_{ij\in E_F} W(x_i, x_j) \prod_{ij\notin E_F} (1 - W(x_i, x_j)) dx_1 \dots dx_k$$
$$= \mathbb{E}_{G_n \sim P_W} t_{ind}(F, G_n)$$

Thm (thms 9.23 + 11.3 + 11.5) $|G_n| \to \infty$

If $t_{ind}(F, G_n)$ converges for all F,

Subgraph density: probability of drawing a given subgraph

$$t_{ind}(F,G) = \mathbb{P}(S_k(G) = F$$

Notation in the book...

F with k nodes $S_k(G)$: sample subgraph with k independent nodes

$$\mathsf{Ex}: t_{ind}(\bigcirc, \checkmark) = 2/10$$

Subgraph density for graphons

$$t_{ind}(F,W) = \int_{[0,1]^k} \prod_{ij\in E_F} W(x_i,x_j) \prod_{ij\notin E_F} (1-W(x_i,x_j)) dx_1 \dots dx_k$$
$$= \mathbb{E}_{G_n \sim P_W} t_{ind}(F,G_n)$$

Thm (thms 9.23 + 11.3 + 11.5) $|G_n| \to \infty$

If $t_{ind}(F, G_n)$ converges for all F, there exists W such that $t_{ind}(F, G_n) \to t_{ind}(F, W)$

Subgraph density: probability of drawing a given subgraph

$$t_{ind}(F,G) = \mathbb{P}(S_k(G) = F$$

Notation in the book...

F with k nodes $S_k(G)$: sample subgraph with k independent nodes

$$\mathsf{Ex}: t_{ind}(\bigcirc, \bigcirc) = 2/10$$

Subgraph density for graphons

$$t_{ind}(F,W) = \int_{[0,1]^k} \prod_{ij\in E_F} W(x_i, x_j) \prod_{ij\notin E_F} (1 - W(x_i, x_j)) dx_1 \dots dx_k$$
$$= \mathbb{E}_{G_n \sim P_W} t_{ind}(F, G_n)$$

Thm (thms 9.23 + 11.3 + 11.5) $|G_n| \to \infty$

If $t_{ind}(F, G_n)$ converges for all F, there exists W such that $t_{ind}(F, G_n) \to t_{ind}(F, W)$ We write $G_n \xrightarrow{t_{ind}} W$

Subgraph density: probability of drawing a given subgraph

$$t_{ind}(F,G) = \mathbb{P}(S_k(G) = F$$

Notation in the book...

measure-preserving

F with k nodes $S_k(G)$: sample subgraph with kindependent nodes

$$\mathsf{Ex}: t_{ind}(\mathbf{b}, \mathbf{a}) = 2/10$$

Subgraph density for graphons

$$t_{ind}(F,W) = \int_{[0,1]^k} \prod_{ij\in E_F} W(x_i,x_j) \prod_{ij\notin E_F} (1-W(x_i,x_j)) dx_1 \dots dx_k$$
$$= \mathbb{E}_{G_n \sim P_W} t_{ind}(F,G_n)$$

Thm (thms 9.23 + 11.3 + 11.5) $|G_n| \to \infty$

If $t_{ind}(F,G_n)$ converges for all F, there exists W such that We write $G_n \xrightarrow{t_{ind}} W$ for $\phi:[0,1]\to[0,1]$

Unique up to (weak) **isomorphism**

More general than previous notion of random graphs?

More general than previous notion of random graphs?

(Cor 10.4)
$$G_n \sim P_W \Rightarrow \mathbb{P}(|t_{ind}(F, G_n) - t_{ind}(F, W)| \ge \varepsilon) \le e^{-\frac{\varepsilon^2 n}{2k^2}}$$

2

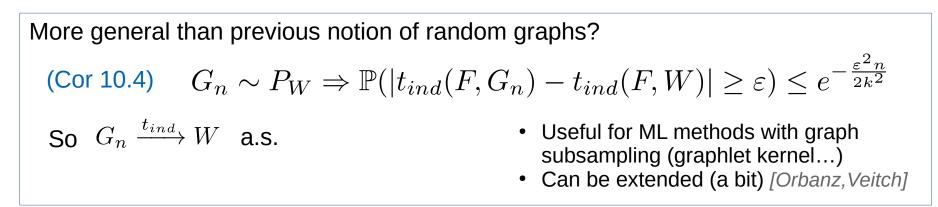
More general than previous notion of random graphs? (Cor 10.4) $G_n \sim P_W \Rightarrow \mathbb{P}(|t_{ind}(F, G_n) - t_{ind}(F, W)| \ge \varepsilon) \le e^{-\frac{\varepsilon^2 n}{2k^2}}$ So $G_n \xrightarrow{t_{ind}} W$ a.s.

More general than previous notion of random graphs? (Cor 10.4) $G_n \sim P_W \Rightarrow \mathbb{P}(|t_{ind}(F,G_n) - t_{ind}(F,W)| \ge \varepsilon) \le e^{-\frac{\varepsilon^2 n}{2k^2}}$ So $G_n \xrightarrow{t_{ind}} W$ a.s. • Useful for ML methods with graph subsampling (graphlet kernel...)

More general than previous notion of random graphs? (Cor 10.4) $G_n \sim P_W \Rightarrow \mathbb{P}(|t_{ind}(F, G_n) - t_{ind}(F, W)| \ge \varepsilon) \le e^{-\frac{\varepsilon^2 n}{2k^2}}$ So $G_n \xrightarrow{t_{ind}} W$ a.s. • Useful for ML methods with graph subsampling (graphlet kernel...) • Can be extended (a bit) [Orbanz, Veitch]

More general than previous notion of random graphs? (Cor 10.4) $G_n \sim P_W \Rightarrow \mathbb{P}(|t_{ind}(F,G_n) - t_{ind}(F,W)| \ge \varepsilon) \le e^{-\frac{\varepsilon^2 n}{2k^2}}$ So $G_n \xrightarrow{t_{ind}} W$ a.s. • Useful for ML methods with graph subsampling (graphlet kernel...) • Can be extended (a bit) [Orbanz, Veitch]

How much more general? See Section 11.2



How much more general? See Section 11.2

Theorem 11.7. If a graph sequence $(G_1, G_2, ...)$ is convergent, then the distributions $\sigma_k = \lim_{n \to \infty} \sigma_{k,G_n}$ form a consistent and local random graph model. Conversely, every consistent and local random graph model arises this way.

More general than previous notion of random graphs? (Cor 10.4) $G_n \sim P_W \Rightarrow \mathbb{P}(|t_{ind}(F,G_n) - t_{ind}(F,W)| \ge \varepsilon) \le e^{-\frac{\varepsilon^2 n}{2k^2}}$ So $G_n \xrightarrow{t_{ind}} W$ a.s. • Useful for ML methods with graph subsampling (graphlet kernel...)

• Can be extended (a bit) [Orbanz, Veitch]

How much more general? See Section 11.2

Theorem 11.7. If a graph sequence $(G_1, G_2, ...)$ is convergent, then the distributions $\sigma_k = \lim_{n\to\infty} \sigma_{k,G_n}$ form a consistent and local random graph model. Conversely, every consistent and local random graph model arises this way.

NB: In the book, all definitions are given with "homomorphism density" (non-injective, preserves only adjacency) (chap 5&7: everything equivalent!)

More general than previous notion of random graphs?
(Cor 10.4)
$$G_n \sim P_W \Rightarrow \mathbb{P}(|t_{ind}(F, G_n) - t_{ind}(F, W)| \ge \varepsilon) \le e^{-\frac{\varepsilon^2 n}{2k^2}}$$

So $G_n \xrightarrow{t_{ind}} W$ a.s.
• Useful for ML methods with graph subsampling (graphlet kernel...)

• Can be extended (a bit) [Orbanz, Veitch]

How much more general? See Section 11.2

Theorem 11.7. If a graph sequence $(G_1, G_2, ...)$ is convergent, then the distributions $\sigma_k = \lim_{n \to \infty} \sigma_{k,G_n}$ form a consistent and local random graph model. Conversely, every consistent and local random graph model arises this way.

NB: In the book, all definitions are given with "homomorphism density" (non-injective, preserves only adjacency) (chap 5&7: everything equivalent!)

$$t(F,G) = \frac{\hom(F,G)}{n^k}$$
$$t(F,W) = \int_{[0,1]^k} \prod_{ij\in E_F} W(x_i,x_j) dx_1 \dots dx_k$$

More general than previous notion of random graphs?
(Cor 10.4)
$$G_n \sim P_W \Rightarrow \mathbb{P}(|t_{ind}(F, G_n) - t_{ind}(F, W)| \ge \varepsilon) \le e^{-\frac{\varepsilon^2 n}{2k^2}}$$

So $G_n \xrightarrow{t_{ind}} W$ a.s. • Useful for ML methods with graph subsampling (graphlet kernel...)

• Can be extended (a bit) [Orbanz, Veitch]

How much more general? See Section 11.2

Theorem 11.7. If a graph sequence $(G_1, G_2, ...)$ is convergent, then the distributions $\sigma_k = \lim_{n \to \infty} \sigma_{k,G_n}$ form a consistent and local random graph model. Conversely, every consistent and local random graph model arises this way.

NB: In the book, all definitions are given with "homomorphism density" (non-injective, preserves only adjacency) (chap 5&7: everything equivalent!)

$$t(F,G) = \frac{\hom(F,G)}{n^k}$$

$$t(F,W) = \int_{[0,1]^k} \prod_{ij \in E_F} W(x_i, x_j) dx_1 \dots dx_k$$

$$\boxed{t_{ind}(\cdots, b) = 0}$$

$$t(\cdots, b) = 3/27$$

More general than previous notion of random graphs?
(Cor 10.4)
$$G_n \sim P_W \Rightarrow \mathbb{P}(|t_{ind}(F, G_n) - t_{ind}(F, W)| \ge \varepsilon) \le e^{-\frac{\varepsilon^2 n}{2k^2}}$$

So $G_n \xrightarrow{t_{ind}} W$ a.s. • Useful for ML methods with graph subsampling (graphlet kernel...)

• Can be extended (a bit) [Orbanz, Veitch]

How much more general? See Section 11.2

Theorem 11.7. If a graph sequence $(G_1, G_2, ...)$ is convergent, then the distributions $\sigma_k = \lim_{n \to \infty} \sigma_{k,G_n}$ form a consistent and local random graph model. Conversely, every consistent and local random graph model arises this way.

NB: In the book, all definitions are given with "homomorphism density" (non-injective, preserves only adjacency) (chap 5&7: everything equivalent!)

Somehow simpler:
$$t(F,G) = t(F,W_G)$$

$$\frac{|t_{ind}(F,G) - t_{ind}(F,W_G)|}{|G| \to \infty} 0$$

Exo 7.7

$$t(F,G) = \frac{\hom(F,G)}{n^k}$$

$$t(F,W) = \int_{[0,1]^k} \prod_{ij \in E_F} W(x_i, x_j) dx_1 \dots dx_k$$

$$\boxed{t_{ind}(\cdots, b) = 0}$$

$$t(\cdots, b) = 3/27$$

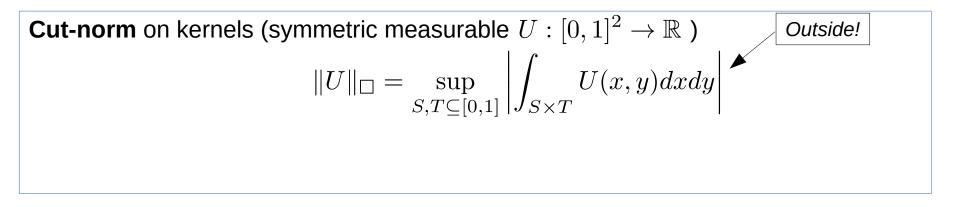
3 : graphon as completed graph space

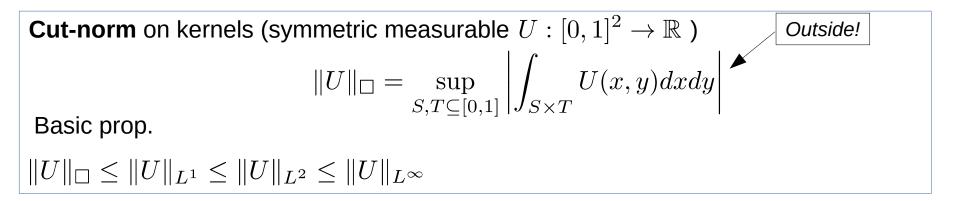
Cut-norm on kernels (symmetric measurable $U:[0,1]^2 \to \mathbb{R}$)

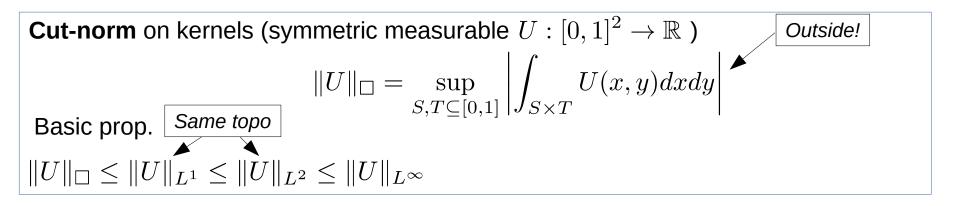
3 : graphon as completed graph space

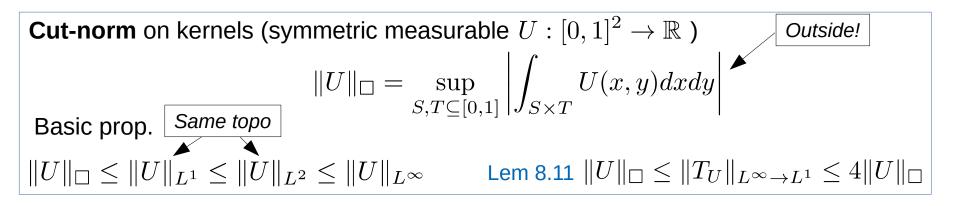
Cut-norm on kernels (symmetric measurable $U : [0,1]^2 \to \mathbb{R}$) $||U||_{\Box} = \sup_{S,T \subseteq [0,1]} \left| \int_{S \times T} U(x,y) dx dy \right|$

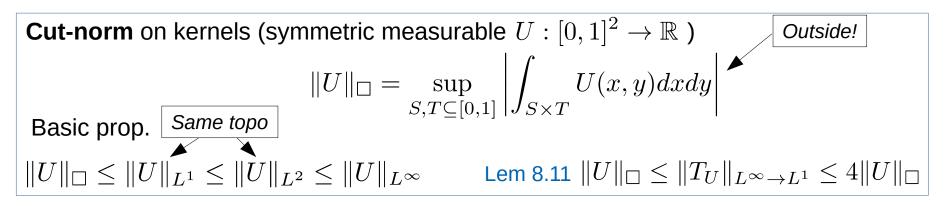
3 : graphon as completed graph space





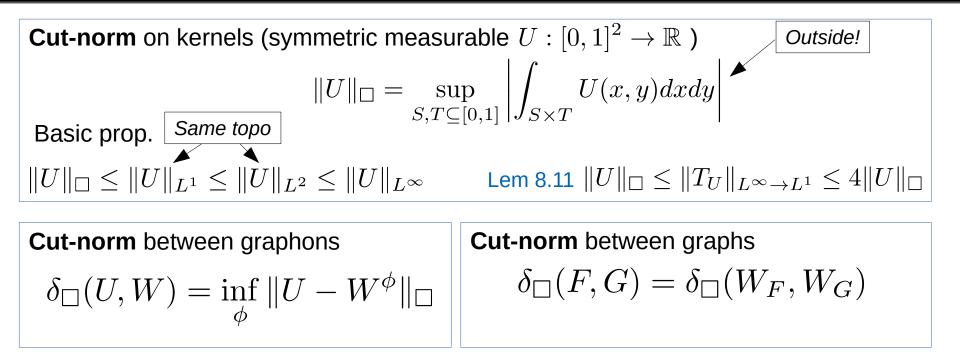


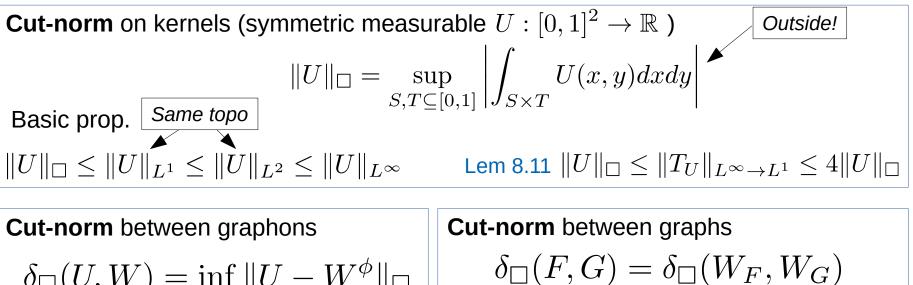




Cut-norm between graphons

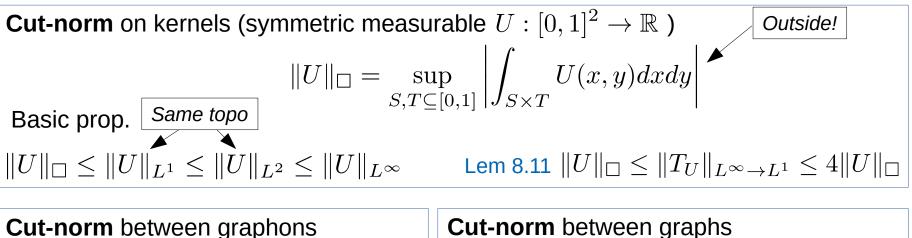
$$\delta_{\Box}(U,W) = \inf_{\phi} \|U - W^{\phi}\|_{\Box}$$





$$\Box(U,W) = \inf_{\phi} \|U - W^{\phi}\|_{\Box}$$

Also (hairy) purely discrete expression (Lem 8.9)



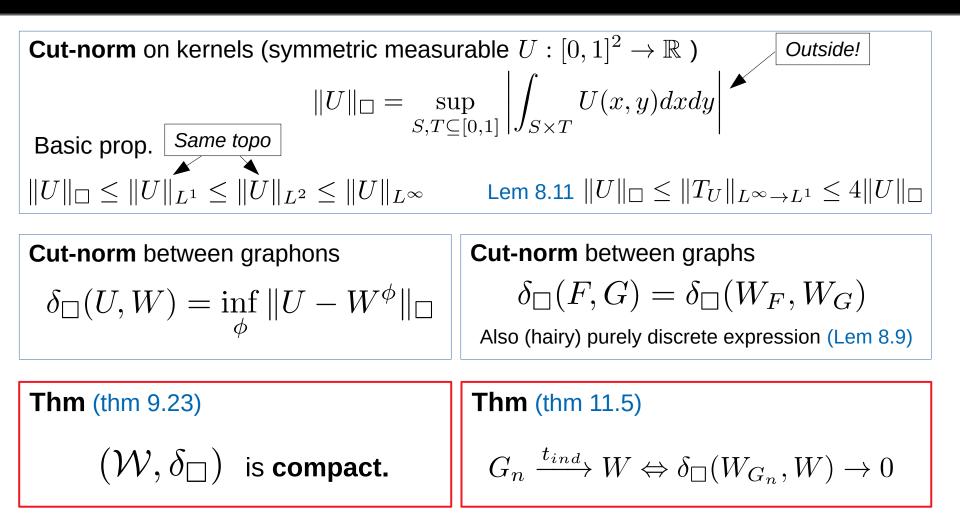
$$\delta_{\Box}(U,W) = \inf_{\phi} \|U - W^{\phi}\|_{\Box}$$

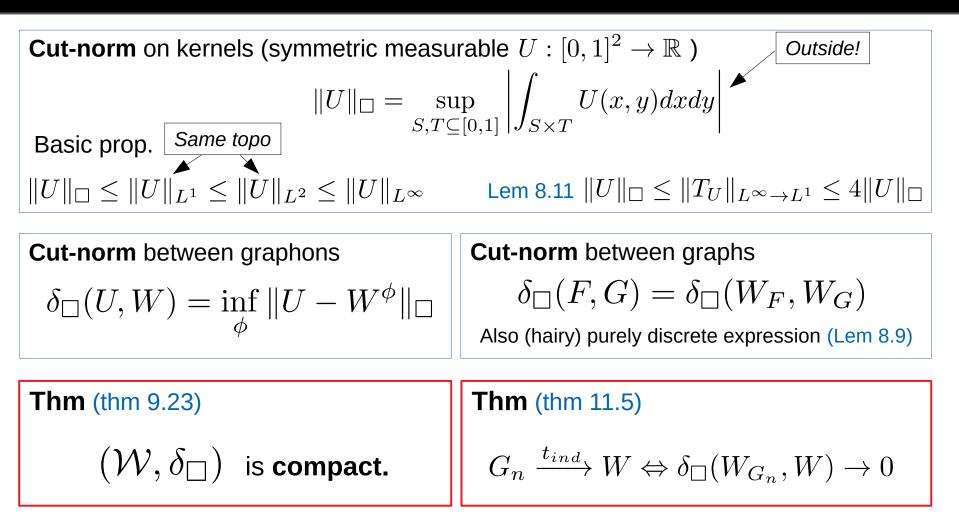
$$\delta_{\Box}(F,G) = \delta_{\Box}(W_F,W_G)$$

Also (hairy) purely discrete expression (Lem 8.9)

Thm (thm 9.23)

 $(\mathcal{W}, \delta_{\Box})$ is compact.





Those two theorems really sparked the mathematical interest on graphons. They are **hybrids analysis/combinatoric results**, and have interesting corollaries: eg, for all \mathcal{E} there is $n_{\mathcal{E}}$ such that graphs of size $n_{\mathcal{E}}$ are an \mathcal{E} - net for graphons (in the cut metric).

Thm (thm 11.5)

$$G_n \xrightarrow{t_{ind}} W \Leftrightarrow \delta_{\Box}(W_{G_n}, W) \to 0$$

Thm (thm 11.5)

$$G_n \xrightarrow{t_{ind}} W \Leftrightarrow \delta_{\Box}(W_{G_n}, W) \to 0$$

Sketch of proof

Thm (thm 11.5)

$$G_n \xrightarrow{t_{ind}} W \Leftrightarrow \delta_{\Box}(W_{G_n}, W) \to 0$$

Sketch of proof

Counting lemma (lem 10.23)

$$|t(F,W) - t(F,W')| \le |E_F|\delta_{\Box}(W,W')$$

Thm (thm 11.5)

$$G_n \xrightarrow{t_{ind}} W \Leftrightarrow \delta_{\Box}(W_{G_n}, W) \to 0$$

Sketch of proof

Counting lemma (lem 10.23)

$$|t(F,W) - t(F,W')| \le |E_F|\delta_{\Box}(W,W')|$$

Exo 10.30 $|t_{ind}(F, U) - t_{ind}(F, W)| \le 2k^2 \delta_{\Box}(U, W)$

Thm (thm 11.5)

$$G_n \xrightarrow{t_{ind}} W \Leftrightarrow \delta_{\Box}(W_{G_n}, W) \to 0$$

Sketch of proof

Counting lemma (lem 10.23)

$$|t(F,W) - t(F,W')| \le |E_F|\delta_{\Box}(W,W')|$$

Exo 10.30 $|t_{ind}(F, U) - t_{ind}(F, W)| \le 2k^2 \delta_{\Box}(U, W)$

Inverse counting lemma (lem 10.32)

$$\left[\forall F \in \mathcal{G}_k, |t(F,U) - t(F,W)| \le 2^{-k^2}\right] \Rightarrow \delta_{\Box}(U,W) \le \frac{50}{\sqrt{\log k}}$$

Approximation by step functions: **Szemerédi partitions** regularity Lemmas (chap 9) base of proof for compacity

Approximation by step functions: **Szemerédi partitions** regularity Lemmas (chap 9) base of proof for compacity

$$||U - \sum_{i=1}^{k} a_i 1_{S_i \times T_i}||_{\Box} \le 2/\sqrt{k}$$
 Lem 9.10

Approximation by step functions: **Szemerédi partitions** regularity Lemmas (chap 9) base of proof for compacity

$$\|U - \sum_{i=1}^{k} a_i 1_{S_i \times T_i}\|_{\Box} \le 2/\sqrt{k}$$
 Lem 9.10

Spectral analysis (7.5, 11.6) compact operator $T_W f = \int W(\cdot, x) f(x) dx$

Approximation by step functions: **Szemerédi partitions** regularity Lemmas (chap 9) base of proof for compacity

$$\|U - \sum_{i=1}^{k} a_i 1_{S_i \times T_i}\|_{\Box} \le 2/\sqrt{k}$$
 Lem 9.10

Spectral analysis (7.5, 11.6) compact operator $T_W f = \int W(\cdot, x) f(x) dx$

• There is a (hairy) link between t(F, W) and eigen-elements of W (eq. 7.25)

Approximation by step functions: **Szemerédi partitions** regularity Lemmas (chap 9) base of proof for compacity

$$\|U - \sum_{i=1}^{k} a_i 1_{S_i \times T_i}\|_{\Box} \le 2/\sqrt{k}$$
 Lem 9.10

Spectral analysis (7.5, 11.6) compact operator $T_W f = \int W(\cdot, x) f(x) dx$

- There is a (hairy) link between t(F, W) and eigen-elements of W (eq. 7.25)
- Consequence: thm 11.53

Approximation by step functions: **Szemerédi partitions** regularity Lemmas (chap 9) base of proof for compacity

$$\|U - \sum_{i=1}^{k} a_i 1_{S_i \times T_i}\|_{\Box} \le 2/\sqrt{k}$$
 Lem 9.10

Spectral analysis (7.5, 11.6) compact operator $T_W f = \int W(\cdot, x) f(x) dx$

- There is a (hairy) link between t(F, W) and eigen-elements of W (eq. 7.25)
- Consequence: thm 11.53 $\lambda'_1(W) \le \lambda'_2(W) \le \ldots \le 0 \le \ldots \le \lambda_2(W) \le \lambda_1(W)$ $\lambda_1(G) \ge \ldots \ge \lambda_n(G), \quad \lambda'_i(G) = \lambda_{n-i+1}(G)$

Approximation by step functions: **Szemerédi partitions** regularity Lemmas (chap 9) base of proof for compacity

$$\|U - \sum_{i=1}^{k} a_i 1_{S_i \times T_i}\|_{\Box} \le 2/\sqrt{k}$$
 Lem 9.10

Spectral analysis (7.5, 11.6) compact operator $T_W f = \int W(\cdot, x) f(x) dx$

- There is a (hairy) link between t(F, W) and eigen-elements of W (eq. 7.25)
- Consequence: thm 11.53 $\lambda'_1(W) \le \lambda'_2(W) \le \ldots \le 0 \le \ldots \le \lambda_2(W) \le \lambda_1(W)$ $\lambda_1(G) \ge \ldots \ge \lambda_n(G), \quad \lambda'_i(G) = \lambda_{n-i+1}(G)$

 $\delta_{\Box}(G_n, W) \to 0 \Rightarrow \lambda_i(G_n) \to \lambda_i(W), \lambda_i'(G_n) \to \lambda_i'(W)$

Approximation by step functions: **Szemerédi partitions** regularity Lemmas (chap 9) base of proof for compacity

$$||U - \sum_{i=1}^{k} a_i 1_{S_i \times T_i}||_{\Box} \le 2/\sqrt{k}$$
 Lem 9.10

Spectral analysis (7.5, 11.6) compact operator $T_W f = \int W(\cdot, x) f(x) dx$

- There is a (hairy) link between t(F, W) and eigen-elements of W (eq. 7.25)
- Consequence: thm 11.53 $\lambda'_1(W) \le \lambda'_2(W) \le \ldots \le 0 \le \ldots \le \lambda_2(W) \le \lambda_1(W)$ $\lambda_1(G) \ge \ldots \ge \lambda_n(G), \quad \lambda'_i(G) = \lambda_{n-i+1}(G)$

$$\delta_{\Box}(G_n, W) \to 0 \Rightarrow \lambda_i(G_n) \to \lambda_i(W), \lambda_i'(G_n) \to \lambda_i'(W)$$

(further: Diao et al "Model-free consistency of graph partitioning")

Approximation by step functions: **Szemerédi partitions** regularity Lemmas (chap 9) base of proof for compacity

$$\|U - \sum_{i=1}^{k} a_i 1_{S_i \times T_i}\|_{\Box} \le 2/\sqrt{k}$$
 Lem 9.10

Spectral analysis (7.5, 11.6) compact operator $T_W f = \int W(\cdot, x) f(x) dx$

- There is a (hairy) link between t(F, W) and eigen-elements of W (eq. 7.25)
- Consequence: thm 11.53 $\lambda'_1(W) \le \lambda'_2(W) \le \ldots \le 0 \le \ldots \le \lambda_2(W) \le \lambda_1(W)$ $\lambda_1(G) \ge \ldots \ge \lambda_n(G), \quad \lambda'_i(G) = \lambda_{n-i+1}(G)$

$$\delta_{\Box}(G_n, W) \to 0 \Rightarrow \lambda_i(G_n) \to \lambda_i(W), \lambda'_i(G_n) \to \lambda'_i(W)$$

(further: Diao et al "Model-free consistency of graph partitioning")

Misc.

Lem 8.22

```
\|\cdot\|_{\square} conv. \Rightarrow weak- \star conv.
```

Approximation by step functions: **Szemerédi partitions** regularity Lemmas (chap 9) base of proof for compacity

$$\|U - \sum_{i=1}^{k} a_i 1_{S_i \times T_i}\|_{\Box} \le 2/\sqrt{k}$$
 Lem 9.10

Spectral analysis (7.5, 11.6) compact operator $T_W f = \int W(\cdot, x) f(x) dx$

- There is a (hairy) link between t(F, W) and eigen-elements of W (eq. 7.25)
- Consequence: thm 11.53 $\lambda'_1(W) \le \lambda'_2(W) \le \ldots \le 0 \le \ldots \le \lambda_2(W) \le \lambda_1(W)$ $\lambda_1(G) \ge \ldots \ge \lambda_n(G), \quad \lambda'_i(G) = \lambda_{n-i+1}(G)$

$$\delta_{\Box}(G_n, W) \to 0 \Rightarrow \lambda_i(G_n) \to \lambda_i(W), \lambda_i'(G_n) \to \lambda_i'(W)$$

(further: Diao et al "Model-free consistency of graph partitioning")

Misc.

Lem 8.22

```
\|\cdot\|_{\square} conv. \Rightarrow weak- \star conv.
```

Concentration (Lem 10.16)

$$\mathbb{P}(\delta_{\square}(G_n, W) \geq 22/\sqrt{\log n}) \leq e^{-\frac{n}{2\log n}}$$

Basic graphon theory only covers **dense** graphs:

if $|E_{G_n}| = o(n^2)$, then $G_n \xrightarrow{t_{ind}} 0$!

Basic graphon theory only covers **dense** graphs: if $|E_{G_n}| = o(n^2)$, then $G_n \xrightarrow{t_{ind}} 0$!

There are many competing theories for sparse graph limits, based on **one of the three points of view**. But no satisfying "triple equivalency"!

Basic graphon theory only covers **dense** graphs: if $|E_{G_n}| = o(n^2)$, then $G_n \xrightarrow{t_{ind}} 0$!

There are many competing theories for sparse graph limits, based on **one of the three points of view**. But no satisfying "triple equivalency"!

Random graphs point of view (most used)

Basic graphon theory only covers **dense** graphs: if $|E_{G_n}| = o(n^2)$, then $G_n \xrightarrow{t_{ind}} 0$!

There are many competing theories for sparse graph limits, based on **one of the three points of view**. But no satisfying "triple equivalency"!

Random graphs point of view (most used)

$$a_{ij} \sim \operatorname{Ber}(\rho_n W(x_i, x_j))$$

Basic graphon theory only covers **dense** graphs: if $|E_{G_n}| = o(n^2)$, then $G_n \xrightarrow{t_{ind}} 0$!

There are many competing theories for sparse graph limits, based on **one of the three points of view**. But no satisfying "triple equivalency"!

Random graphs point of view (most used)

$$a_{ij} \sim \operatorname{Ber}(\rho_n W(x_i, x_j))$$

$\rho_n \sim 1$	Dense
$\rho_n \sim 1/n$	Sparse
$\rho_n \sim \log n/n$	Relatively sparse

Basic graphon theory only covers **dense** graphs: if $|E_{G_n}| = o(n^2)$, then $G_n \xrightarrow{t_{ind}} 0$!

There are many competing theories for sparse graph limits, based on **one of the three points of view**. But no satisfying "triple equivalency"!

Random graphs point of view (most used)

$$a_{ij} \sim \operatorname{Ber}(\rho_n W(x_i, x_j))$$

$\rho_n \sim 1$	Dense
$\rho_n \sim 1/n$	Sparse
$\rho_n \sim \log n/n$	Relatively sparse

Convergence can be "restored" for the normalized Laplacian

Basic graphon theory only covers **dense** graphs: if $|E_{G_n}| = o(n^2)$, then $G_n \xrightarrow{t_{ind}} 0$!

There are many competing theories for sparse graph limits, based on **one of the three points of view**. But no satisfying "triple equivalency"!

Random graphs point of view (most used)

$$a_{ij} \sim \operatorname{Ber}(\rho_n W(x_i, x_j))$$

$\rho_n \sim 1$	Dense
$\rho_n \sim 1/n$	Sparse
$ \rho_n \sim \log n/n $	Relatively sparse

Convergence can be "restored" for the normalized Laplacian up to relatively sparse model: [Keriven and Vaiter 2020]

Basic graphon theory only covers **dense** graphs: if $|E_{G_n}| = o(n^2)$, then $G_n \xrightarrow{t_{ind}} 0$!

There are many competing theories for sparse graph limits, based on **one of the three points of view**. But no satisfying "triple equivalency"!

Random graphs point of view (most used)

$$a_{ij} \sim \operatorname{Ber}(\rho_n W(x_i, x_j))$$

Convergence can be "restored" for the normalized Laplacian up to relatively sparse model: [Keriven and Vaiter 2020]

$\rho_n \sim 1$	Dense	
$\rho_n \sim 1/n$	Sparse	
$ \rho_n \sim \log n/n $	Relatively sparse	
"Sampling" point of view [Veitch, Roy, Orbanz]		

Basic graphon theory only covers **dense** graphs:

if
$$|E_{G_n}| = o(n^2)$$
, then $G_n \xrightarrow{t_{ind}} 0$!

There are many competing theories for sparse graph limits, based on **one of the three points of view**. But no satisfying "triple equivalency"!

Random graphs point of view (most used)

$$a_{ij} \sim \operatorname{Ber}(\rho_n W(x_i, x_j))$$

Convergence can be "restored" for the normalized Laplacian up to relatively sparse model: [Keriven and Vaiter 2020]

Metric point of view

$$\begin{array}{ll} \rho_n \sim 1 & \text{Dense} \\ \rho_n \sim 1/n & \text{Sparse} \\ \rho_n \sim \log n/n & \text{Relatively sparse} \\ \end{array}$$

$$\begin{array}{l} \text{"Sampling" point of view} \\ \text{[Veitch, Roy, Orbanz]} \end{array}$$

Basic graphon theory only covers **dense** graphs:

if
$$|E_{G_n}| = o(n^2)$$
, then $G_n \xrightarrow{t_{ind}} 0$!

There are many competing theories for sparse graph limits, based on **one of the three points of view**. But no satisfying "triple equivalency"!

Random graphs point of view (most used)

$$a_{ij} \sim \operatorname{Ber}(\rho_n W(x_i, x_j))$$

Convergence can be "restored" for the normalized Laplacian up to relatively sparse model: [Keriven and Vaiter 2020]

Metric point of view

Eg, L^p - graphon [Borgs et al 2014]

 $ho_n \sim 1$ Dense ho_n \sim 1/n Sparse ho_n \sim \log n/n Relatively sparse

"Sampling" point of view [Veitch, Roy, Orbanz]

Basic graphon theory only covers **dense** graphs:

if
$$|E_{G_n}| = o(n^2)$$
, then $G_n \xrightarrow{t_{ind}} 0$!

There are many competing theories for sparse graph limits, based on **one of the three points of view**. But no satisfying "triple equivalency"!

Random graphs point of view (most used)

$$a_{ij} \sim \operatorname{Ber}(\rho_n W(x_i, x_j))$$

Convergence can be "restored" for the normalized Laplacian up to relatively sparse model: [Keriven and Vaiter 2020]

Metric point of view

gipsa-lab

Eg, L^p - graphon [Borgs et al 2014]

Based on some renormalization

 $ho_n \sim 1$ Dense ho_n \sim 1/n Sparse ho_n \sim \log n/n Relatively sparse "Sampling" point of view

[Veitch, Roy, Orbanz]

Basic graphon theory only covers **dense** graphs:

if
$$|E_{G_n}| = o(n^2)$$
, then $G_n \xrightarrow{t_{ind}} 0$!

There are many competing theories for sparse graph limits, based on **one of the three points of view**. But no satisfying "triple equivalency"!

Random graphs point of view (most used)

$$a_{ij} \sim \operatorname{Ber}(\rho_n W(x_i, x_j))$$

Convergence can be "restored" for the normalized Laplacian up to relatively sparse model: [Keriven and Vaiter 2020]

Metric point of view

Eg, L^p - graphon [Borgs et al 2014]

- Based on some renormalization
- Pbm: dense "spots" converge to infinity

 $ho_n \sim 1$ Dense ho_n \sim 1/n Sparse ho_n \sim \log n/n Relatively sparse "Sampling" point of view

"Sampling" point of view [Veitch, Roy, Orbanz]

Basic graphon theory only covers **dense** graphs:

if
$$|E_{G_n}| = o(n^2)$$
, then $G_n \xrightarrow{t_{ind}} 0$!

There are many competing theories for sparse graph limits, based on **one of the three points of view**. But no satisfying "triple equivalency"!

Random graphs point of view (most used)

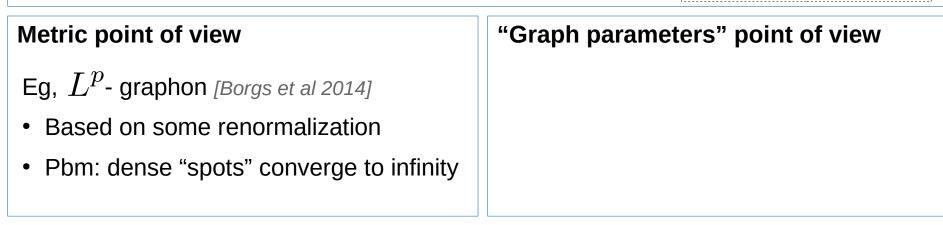
$$a_{ij} \sim \operatorname{Ber}(\rho_n W(x_i, x_j))$$

$$ho_n \sim 1$$
 Dense
ho_n \sim 1/n Sparse
ho_n \sim \log n/n Relatively sparse

1

Convergence can be "restored" for the normalized Laplacian up to relatively sparse model: [Keriven and Vaiter 2020]

"Sampling" point of view [Veitch, Roy, Orbanz]



Basic graphon theory only covers **dense** graphs:

if
$$|E_{G_n}| = o(n^2)$$
, then $G_n \xrightarrow{t_{ind}} 0$!

There are many competing theories for sparse graph limits, based on **one of the three points of view**. But no satisfying "triple equivalency"!

Random graphs point of view (most used)

$$a_{ij} \sim \operatorname{Ber}(\rho_n W(x_i, x_j))$$

$$ho_n \sim 1$$
 Dense
 $ho_n \sim 1/n$ Sparse
 $ho_n \sim \log n/n$ Relatively sparse

"Sampling" point of view

[Veitch, Roy, Orbanz]

Convergence can be "restored" for the normalized Laplacian up to relatively sparse model: [Keriven and Vaiter 2020]

Metric point of view

Eg, L^p - graphon [Borgs et al 2014]

- Based on some renormalization
- Pbm: dense "spots" converge to infinity

"Graph parameters" point of view

1

Convergence to *measures on the square* [Kunszenti, Lovasz, Szegedy]

Basic graphon theory only covers **dense** graphs:

if
$$|E_{G_n}| = o(n^2)$$
, then $G_n \xrightarrow{t_{ind}} 0$!

There are many competing theories for sparse graph limits, based on **one of the three points of view**. But no satisfying "triple equivalency"!

Random graphs point of view (most used)

$$a_{ij} \sim \operatorname{Ber}(\rho_n W(x_i, x_j))$$

$$ho_n \sim 1/n$$
 Sparse $ho_n \sim \log n/n$ Relatively sparse

[Veitch, Roy, Orbanz]

Dense

"Sampling" point of view

Convergence can be "restored" for the normalized Laplacian up to relatively sparse model: [Keriven and Vaiter 2020]

Metric point of view

Eg, L^p - graphon [Borgs et al 2014]

- Based on some renormalization
- Pbm: dense "spots" converge to infinity

"Graph parameters" point of view

 $\rho_n \sim 1$

Convergence to *measures on the square* [Kunszenti, Lovasz, Szegedy]

• Convergence of some orbitals in Hausdorff distance: complicated !

Basic graphon theory only covers **dense** graphs:

if
$$|E_{G_n}| = o(n^2)$$
, then $G_n \xrightarrow{t_{ind}} 0$!

There are many competing theories for sparse graph limits, based on **one of the three points of view**. But no satisfying "triple equivalency"!

Random graphs point of view (most used)

$$a_{ij} \sim \operatorname{Ber}(\rho_n W(x_i, x_j))$$

$$ho_n \sim 1/n$$
 Sparse $ho_n \sim \log n/n$ Relatively sparse

Convergence can be "restored" for the normalized Laplacian up to relatively sparse model: [Keriven and Vaiter 2020]

"Sampling" point of view [Veitch, Roy, Orbanz]

Dense

Metric point of view

Eg, L^p - graphon [Borgs et al 2014]

- Based on some renormalization
- Pbm: dense "spots" converge to infinity

"Graph parameters" point of view

Convergence to *measures on the square* [Kunszenti, Lovasz, Szegedy]

- Convergence of some orbitals in Hausdorff distance: complicated !
- Handles both dense and sparse

 $\rho_{\rm m} \sim 1$

Basic graphon theory only covers **dense** graphs:

if
$$|E_{G_n}| = o(n^2)$$
, then $G_n \xrightarrow{t_{ind}} 0$!

There are many competing theories for sparse graph limits, based on **one of the** three points of view. But no satisfying "triple equivalency"!

Random graphs point of view (most used)

$$a_{ij} \sim \operatorname{Ber}(\rho_n W(x_i, x_j))$$

$$egin{array}{lll}
ho_n\sim 1 & {
m Dense} \
ho_n\sim 1/n & {
m Sparse} \
ho_n\sim \log n/n & {
m Relatively sparse} \end{array}$$

 $1 \alpha \sim 1$

Convergence can be "restored" for the normalized Laplacian up to relatively sparse model: [Keriven and Vaiter 2020]

"Sampling" point of view [Veitch, Roy, Orbanz]

"Graph parameters" point of view Metric point of view Convergence to *measures on the square* Eg, L^p - graphon [Borgs et al 2014] [Kunszenti, Lovasz, Szegedy] Based on some renormalization Convergence of some orbitals in Hausdorff distance: complicated ! Pbm: dense "spots" converge to infinity Handles both dense and sparse Not equivalent to anything else !

Thank you !

