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● Properties of large random graphs

● Analysis vs other
● Link between combinatorial, probabilistic, and analytical objects/problems

● Random Matrix theory? [Zhu 2019 “A graphon approach to limiting spectral distributions of 
Wigner-type matrices]

● For statisticians / Machine learner (not much)
● Flexible model of random graphs

● Identifiability, sufficient statistics, parameter estimation, property testing…
● Clustering / semi-supervised learning

● Unify SBM, similarity kernel models, other...

● For anywhere with large graphs! (?)
● Statistical physics
● Network analysis...
● [review “Graphons: A Nonparametric Method to Model, Estimate, and Design Algorithms for 

Massive Networks” Borgs and Chayes]

● Mostly theoretical, but a good 
generative model for applications

● The basic theory is only 
“satisfying” for dense graphs
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Graphon : how ?

Three point of views, more or less general, but 
in some way equivalent

● Random graphs
● Easiest to define
● Generalization of several other models
● Most useful for applied mathematicians (concentration inequalities...)

● Convergence of parameters (subgraphs density)
● Related to subgraph sampling
● Easy to define, more difficult to analyze

● Cut-norm convergence
● “True” appropriate mathematical notion
● What really connects several mathematical fields
● Mathematically “advanced”! 
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Could replace:

●         by         or              

● Uniform distrib.

● Bernoulli distrib.

1 : graphon as random graph models

if:

● Erdös-Rényi: constant

● Stochastic Block Model: 
piecewise constant

● Similarity kernel (used in ML)   
ex: More interpretable, but 

often does not change 
“basic” mathematical 
properties

symmetric measurable
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● Example of application: [review “Graphons: A Nonparametric Method to Model, Estimate, 
and Design Algorithms for Massive Networks” Borgs and Chayes]

● Graphon “estimation” [Klopp, Tsybakov, De Castro, Verzelen...]
● Estimate the connectivity model        (parametric, non-parametric)
● Estimate the connectivity matrix        (often by block)
● Application to (generalized) clustering, missing link estimation…

● Generative model for other tasks
● Convergence of eigen-elements of the Laplacian [Diao et al. 2016]
● To analyze algorithms in ML ?

● (in progress, w/ S. Vaiter and A. Bietti) Stability/generalization of Graph Neural Networks

1 : graphon as random graph models

Basic property: concentration (thm 10.3)

Extension to more general models (section 11.2) 
● Hierarchical “exchangeable models” (pertains to invariance by permutation and nesting)       

[Bickel and Chen, Veitch, Roy, Orbanz...]

Assume

when only edges arriving at one 
node differ
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2 : graphon as subgraph densities

Unique up to (weak) isomorphism

Thm (thms 9.23 + 11.3 + 11.5)

Subgraph density: probability of drawing a given subgraph Notation in 
the book...

     with       nodes

: sample subgraph with   
  independent nodes Ex :

Subgraph density for graphons

We write

for
measure-preserving
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● Useful for ML methods with graph 
subsampling (graphlet kernel…)

● Can be extended (a bit) [Orbanz,Veitch]

NB: In the book, all definitions are given with 
“homomorphism density”
(non-injective, preserves only adjacency) 
(chap 5&7: everything equivalent!)

(Cor 10.4)

So a.s.

How much more general? See Section 11.2

Somehow simpler:

Exo 7.7
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Thm (thm 9.23)

3 : graphon as completed graph space

Also (hairy) purely discrete expression (Lem 8.9)

Cut-norm on kernels (symmetric measurable                           ) Outside!

Lem 8.11

Same topoBasic prop.

Cut-norm between graphons Cut-norm between graphs 

is compact.

Thm (thm 11.5)

Those two theorems really sparked the mathematical interest on graphons. They are hybrids 
analysis/combinatoric results, and have interesting corollaries: eg, for all     there is       
such that graphs of size       are an     - net for graphons (in the cut metric).
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Thm (thm 11.5)

Exo 10.30

Counting lemma (lem 10.23)

Inverse counting lemma (lem 10.32)

Sketch of proof
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3 : graphon as completed graph space

Spectral analysis (7.5, 11.6) compact operator

● There is a (hairy) link between               and eigen-elements of           (eq. 7.25)

● Consequence: thm 11.53

(further: Diao et al “Model-free consistency of graph partitioning”)

Approximation by step functions: Szemerédi partitions regularity Lemmas (chap 9)
base of proof for compacity

Concentration (Lem 10.16) 

Lem 9.10

Lem 8.22

Misc.
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● Pbm: dense “spots” converge to infinity
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Thank you !
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